
microraiden Documentation
Release 0.2.6

brainbot labs Est.

Aug 22, 2018

Contents

1 What is µRaiden? 1

2 Try out the demos 3

3 Next steps 5

4 Documentation Content 7
4.1 Introduction . 7

4.1.1 Comparison: Raiden Network . 7
4.1.2 Sender / Receiver . 7
4.1.3 Smart Contract . 8

4.2 Tutorials . 10
4.2.1 Development setup . 10
4.2.2 Blockchain setup . 11
4.2.3 Try the echo service . 17
4.2.4 Create a paywall . 22
4.2.5 Setup µRaiden Raspberry Pi in local network . 25

4.3 Applications . 29
4.3.1 Proxy-Server (python) . 29
4.3.2 M2M-Client (python) . 35
4.3.3 Web-Client (JavaScript) . 42

4.4 Smart Contract . 42
4.4.1 Installation . 42
4.4.2 Setup . 42
4.4.3 Deployment . 42
4.4.4 Usage . 45
4.4.5 API . 45

4.5 Specifications . 50
4.5.1 HTTP Headers . 50
4.5.2 Off-Chain sequence . 52
4.5.3 REST API . 54

5 Indices and tables 59

i

ii

CHAPTER 1

What is µRaiden?

µRaiden (read: Micro Raiden) is a payment channel framework for frequent, fast and free ERC20 token based mi-
cropayments between two parties. It comes as a set of open source libraries, documentation, and code examples for
multiple use cases, ready to implement on the Ethereum mainnet. Whereas its big brother, the Raiden Network, aims
to allow for multihop transfers via a network of bidirectional payment channels, µRaiden already enables to make
micropayments through unidirectional payment channels.

1 All robot icons made by Freepic from http://www.flaticon.com.
3 All other icons from http://icomoon.io IcoMoon Icon Pack Free, licensed under a Creative Commons Attribution 4.0 International License

1

http://raiden.network
http://flaticon.com/authors/freepik
http://www.flaticon.com
http://icomoon.io

microraiden Documentation, Release 0.2.6

Fig. 1: Schematic overview of an exemplaric µRaiden application13

2 Chapter 1. What is µRaiden?

CHAPTER 2

Try out the demos

We have deployed some demo applications that make extensive use of µRaiden in your browser. Although you need
some testnet-Ether and MetaMask, it’s a very easy starting point to try out µRaiden. Just follow the instructions on
https://demo.micro.raiden.network/

3

https://demo.micro.raiden.network/

microraiden Documentation, Release 0.2.6

4 Chapter 2. Try out the demos

CHAPTER 3

Next steps

If you want to start playing with µRaiden, a good starting point is to check out the Tutorials section. Best you start
with the developer setup and continue with our Blockchain Tutorial.

5

microraiden Documentation, Release 0.2.6

6 Chapter 3. Next steps

CHAPTER 4

Documentation Content

4.1 Introduction

4.1.1 Comparison: Raiden Network

µRaiden is not part of the Raiden Network. However, it was built using the same state channel idea and implements it
in a less general fashion. It focuses on the concrete application of charging per-use of APIs, digital content and utilities
via micropayments in Ethereum based ERC20 tokens.

The main differences between the Raiden Network and µRaiden are:

• µRaiden is a many-to-one unidirectional payment channel protocol.

A payment channel in the Raiden Network is based on the same principles as µRaiden, but is laid out bidirectionally,
so that the roles of sender and receiver are mutable. Additionally it uses a special cryptographic protocol to connect
the owners of those singular payment channels to form an interconnected network of channels.

This allows participants of the Raiden Network to efficiently send transfers without being forced to pay for opening
new channels with people who are already in the network - it is a many-to-many payment solution.

• µRaiden’s off-chain transactions do not cost anything as they are only exchanged between sender and receiver,
because they don’t use intermediary channels.

Apart from the initial cost of opening up a channel, a µRaiden transaction doesn’t cost anything, because to deliver the
payment itself is as easy as putting some additional data in a http-request.

To be able to use an existing channel in an interconnected network of channels, the Raiden Network requires an
additional, sophisticated application transport layer. The forwarding of payments from sender to receiver through the
network is based on incentivizing intermediary users to lend their resources in a secure and automated way.

4.1.2 Sender / Receiver

Since µRaiden enables easy micropayments from one party to another, the application is structured in 2 logically
separated parts:

7

https://github.com/raiden-network/raiden

microraiden Documentation, Release 0.2.6

• the Sender or Client side of a payment

• the Receiver or Proxy-Server side of a payment

The Sender is the one who initially deposits Ether in the µRaiden payment channel. From this point on he signs so
called balance proofs with his private key. A balance-proof functions as a valid micropayment, once the Receiver gets
hold of it and keeps it on his disk.

The µRaiden application has different implementations for different scenarios for the Sender side:

• a JavaScript client that runs in the Senders browser whenever the Sender visits the Receiver’s webpage

• a Python client that runs on the Sender’s machine and makes http requests to the Receiver’s Proxy-Server
instance

A typical use case for the JavaScript client would be a content provider, who wants to receive micropayments for
accessing paywalled content. The content provider is the Receiver in this scenario and he would integrate µRaiden’s
Proxy-Server for example in his flask or Django backend. At the same time, the content provider would serve an
implementation of µRaiden’s JavaScript Client from his webpage. All that the consumer of the paywalled content
now needs is an Ethereum account that is backed with some RDN and that is web3 accessible (for example with
MetaMask). The JavaScript client will run in the consumer’s browser and once it needs to sign a microtransaction the
MetaMask plugin will pop up and ask for confirmation.

The Python client would get mainly used in Machine-to-Machine (M2M) applications or more customized applica-
tions without the use of a browser. In this scenario, the Sender has to actively install the client application and connect
it to his standard blockchain-interface (like geth or parity).The client will then send out http-requests to a known Re-
ceiver that is running a Proxy-Server application. Price information on the requested resource will be sent from the
Receiver to the Sender in a custom http-Header. Vice versa, once the Sender has processed his business-logic (like
evaluating the price), he will repeat the http-request with a matching balance proof embedded in the custom http-
Header. This balance proof signature represents the actual micropayment and should be followed up by the Receiver
with the delivery of the requested resource.

Off-chain transactions

A visual description of the process can be found here.

The heart of the system lies in its sender -> receiver off-chain transactions. They offer a secure way to keep track
of the last verified channel balance. The channel balance is calculated each time the sender pays for a resource. He
is prompted to sign a so-called balance proof, i.e., a message that provably confirms the total amount of transferred
tokens. This balance proof is then sent to the receiver’s server. If the balance proof checks out after comparing it with
the last received balance and verifying the sender’s signature, the receiver replaces the old balance value with the new
one.

4.1.3 Smart Contract

To be exact, there is a third party involved in µRaiden:

• the Enforcing or Smart Contract part

This is the part where the trustless nature of the Ethereum blockchain comes into play. The contract acts as the
intermediary, that locks up the initial deposit from the Sender and enforces a possible payout of the funds based on the
signed balance proofs, that the Sender sent out to the Receiver without the use of a blockchain.

Once the Receiver has a balance proof, it’s easy for the Receiver to prove to the contract that the Sender owes him
some tokens. With the balance proof, the contract now can reconstruct the public key of the Sender and knows with
certainty that the Sender must have agreed to the updated balance.

1 All robot icons made by Freepic from http://www.flaticon.com.
3 All other icons from http://icomoon.io IcoMoon Icon Pack Free, licensed under a Creative Commons Attribution 4.0 International License

8 Chapter 4. Documentation Content

http://flaticon.com/authors/freepik
http://www.flaticon.com
http://icomoon.io

microraiden Documentation, Release 0.2.6

Fig. 1: Schematic overview of an exemplaric µRaiden application13

4.1. Introduction 9

microraiden Documentation, Release 0.2.6

This means that there are only 2 transactions that have to happen on the blockchain:

• the initial opening of the channel with the prepaid amount the sender eventually wants to spend during the
channel’s lifetime

• the final closing of the channel, where the sender’s initial deposit is paid out to the receiver and sender, based on
the agreed on off-chain balances

If the channel runs low on funds before it is closed, the sender can increase the transferable amount of the channel
with a topup transaction on-chain.

After a channel is closed, it can’t be used anymore. If the business-relationship between the same sender and receiver
should revive again, a new channel has to be opened.

µRaiden uses its own token for payments which is both ERC20 and ERC223 compliant.

Closing and settling channels

A visual description of the process can be found here.

When a sender wants to close a channel, a final balance proof is prepared and sent to the receiver for a closing signature.
In the happy case, the receiver signs and sends the balance proof and his signature to the smart contract managing the
channels. The channel is promptly closed and the receiver debt is settled. If there are surplus tokens left, they are
returned to the sender.

In the case of an uncooperative receiver (that refuses to provide his closing signature), a sender can send his balance
proof to the contract and trigger a challenge period. The channel is marked as closed, but the receiver can still close
and settle the debt if he wants. If the challenge period has passed and the channel has not been closed, the sender can
call the contract’s settle method to quickly settle the debt and remove the channel from the contract’s memory.

What happens if the sender attempts to cheat and sends a balance proof with a smaller balance? The receiver server
will notice the error and automatically send a request to the channel manager contract during the challenge period to
close the channel with the receiver’s latest stored balance proof.

There are incentives for having a collaborative channel closing. On-chain transaction gas cost is significantly smaller
when the receiver sends a single transaction with the last balance proof and his signature, to settle the debt. Also,
gas cost is acceptable when the sender sends the balance proof along with the receiver’s closing signature. Worst
case scenario is the receiver closing the channel during the challenge period. Therefore, trustworthy sender-receiver
relations are stimulated.

4.2 Tutorials

4.2.1 Development setup

Requirements

It is required that you have pip, python (version 3.5 or greater) and git installed.

• To install pip, see the official documentation

• To install Python download the latest version

• If you don’t have git, download it here

10 Chapter 4. Documentation Content

https://github.com/ethereum/EIPs/issues/20
https://github.com/ethereum/EIPs/issues/223
https://pip.pypa.io/en/stable/installing/
https://www.python.org/downloads/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

microraiden Documentation, Release 0.2.6

Python environment setup

In general, it is recommended to use a virtual environment to separate your global python application from the envi-
ronment (all the dependency-packages) µRaiden likes to run in:

python3 -m venv env
. env/bin/activate

A short check of the location of your python version should show the ./env/bin/python binary.

which python

To switch back to your usual python executable, simply deactivate the venv:

deactivate

There are more sophisticated tools to keep track of your virtualenvs and python installations. For example, check out
pyenv in combination with pyenv-virtualenv.

µRaiden installation for development

When you want to develop on the µRaiden codebase, it is best to install it in pip’s editable mode. This way, you can
edit the source code directly and never worry about reinstalling µRaiden - the linked application always reflects the
changes you made. To install µRaiden for development, download the repository and run our install script with:

git clone git@github.com:raiden-network/microraiden.git
cd microraiden
make pip-install-dev

4.2.2 Blockchain setup

If you want to develop applications that function as the Receiver you have to connect to the Ethereum blockchain
through one of the Ethereum node applications. There are others, but we focus on geth, the Go implementation.

Setup a Ropsten-synced Geth or Parity

The quick start requires that your geth client is synced to the Ropsten testnet. Geth should answer RPC calls on
http://localhost:8545 and have the APIs eth, net, web3 and personal accessible.

Note: as of Geth version 1.8.0, these parameters are required to start Geth in the correct mode:

geth --testnet --syncmode "fast" \
--rpc --rpcapi eth,net,web3,personal \
--cache=1024 \
--rpcport 8545 --rpcaddr 127.0.0.1 \
--rpccorsdomain "*"

If you are having trouble syncing with Geth, you may want to use Parity instead. Use the same parameter but with this
code:

parity --chain ropsten --rpcport=8545

4.2. Tutorials 11

https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv-virtualenv

microraiden Documentation, Release 0.2.6

Funded Ropsten account with MetaMask

Note: You don’t have to follow these steps if you have an account on Ropsten already preloaded with Ropsten Ether
and know how to export the private key of the preloaded account.

After successful installation of MetaMask, just follow the steps mentioned in the screenshots to create a new account,
get Ropsten Ether at a faucet and export the private key of this new, Ether preloaded account. We will use the private
key for Sender applications in the tutorials. Your MetaMask account will represent the Sender of a microtransaction.

Buy TKN on Ropsten

To be able to use the echo client, you have to get the “TKN” Token configured for the RaidenMicroTransferChannels
on Ropsten.

Directly with the TKN smart contract

On the main page (https://github.com/raiden-network/microraiden) the Token addresses are listed, for Ropsten it can
be found here

With our demo app

The easiest way to get some TKN on the Ropsten-network is to use our JavaScript application that we host with our
µRaiden live-demos.

Altough this is part of a specific demo-application, you can just use the upper part of the dialogue and forget about the
lower half.

1. Choose the browser with your Ropsten-ETH loaded MetaMask account activated

2. visit e.g. the fortune cookie demo here

3. Click on Buy to exchange your RopstenETH (RETH) for TKN (in 50 TKN increments)

A dialogue will pop up in MetaMask that asks for your confirmation of the generated transaction.

4. Accept the transaction

To check whether the exchange of TKN was successful, you can add TKN as a custom token to MetaMask.

5. Under the Tokens tab, choose Add token and fill in the TKN address again:

0xFF24D15afb9Eb080c089053be99881dd18aa1090

6. Once the transaction was successful, you should see your TKN balance under the Tokens tab

With MyEtherWallet

If you want to have a little bit more control over the exchange of token, you can also use MyEtherWallet to interact
with the Smart Contract directly:

1. Choose the browser with your Ropsten-ETH loaded MetaMask account activated

2. Go to https://www.myetherwallet.com/ and go through their advice on phishing-precautions.

3. Select the Ropsten Network in the tab in the upper right

4. click on the Contracts tab and fill in the contract address:

12 Chapter 4. Documentation Content

https://github.com/raiden-network/microraiden
https://ropsten.etherscan.io/address/0xff24d15afb9eb080c089053be99881dd18aa1090
https://demo.micro.raiden.network
https://demo.micro.raiden.network/fortunes_en
https://www.myetherwallet.com/

microraiden Documentation, Release 0.2.6

4.2. Tutorials 13

microraiden Documentation, Release 0.2.6

14 Chapter 4. Documentation Content

microraiden Documentation, Release 0.2.6

4.2. Tutorials 15

microraiden Documentation, Release 0.2.6

16 Chapter 4. Documentation Content

microraiden Documentation, Release 0.2.6

0xFF24D15afb9Eb080c089053be99881dd18aa1090

5. fill in the ABI field with the data you get here:

6. Choose the mint function and use MetaMask to access your wallet

7. put in an amount of RopstenETH (RETH) you want to exchange for TKN (0.1 RETH will get you 50 TKN)

A dialogue will pop up in MetaMask that asks for your confirmation of the generated transaction.

8. Accept the transaction

To check whether the exchange of TKN was successful, you can add TKN as a custom token to MetaMask.

9. Under the Tokens tab, choose Add token and fill in the TKN address again:

0xFF24D15afb9Eb080c089053be99881dd18aa1090

10. Once the transaction was successful, you should see your TKN balance under the Tokens tab

Now you’re good to go! Check out the other Tutorials and get started with µRaiden!

4.2.3 Try the echo service

System context

In order to get you started, we created an example application, that receives micropayments and some parameter over
a http-request - and simply echos this parameter when the micropayment was valid. Please follow the microraiden
installation instructions and the instructions to set up geth.

Starting the µRaiden Receiver

Before starting the receiver, it needs to be assigned a private key with some TKN. Navigate to ./microraiden/
microraiden/examples and create a new file containing your private key as exported in the Blockchain Setup
guide by MetaMask. The file should be named pk_tut.txt.

3 All other icons from http://icomoon.io IcoMoon Icon Pack Free, licensed under a Creative Commons Attribution 4.0 International License

4.2. Tutorials 17

http://api-ropsten.etherscan.io/api?module=contract&action=getabi&address=0xFF24D15afb9Eb080c089053be99881dd18aa1090&format=raw
http://icomoon.io

microraiden Documentation, Release 0.2.6

18 Chapter 4. Documentation Content

microraiden Documentation, Release 0.2.6

4.2. Tutorials 19

microraiden Documentation, Release 0.2.6

20 Chapter 4. Documentation Content

microraiden Documentation, Release 0.2.6

Fig. 2: Schematic overview of a machine-to-machine µRaiden application3

4.2. Tutorials 21

microraiden Documentation, Release 0.2.6

From the root directory of µRaiden, start:

python microraiden/examples/echo_server.py --private-key microraiden/examples/pk_tut.
→˓txt

Starting the µRaiden Sender

To actually start the request for resource /hello, we will fire up the µRaiden client with the prefunded account.

While the Receiver is still running (in another terminal window for example), execute this command from the µRaiden
root folder:

python microraiden/examples/echo_client.py --private-key microraiden/examples/pk_tut.
→˓txt --resource /echofix/hello

After some seconds, you should get the output

INFO:root:Got the resource /echofix/hello type=text/html; charset=utf-8:
hello

This means:

• a channel has been created

• a deposit of 50 aTKN has been escrowed

• a micropayment of 1 aTKN has been transferred to the receiver

• the receiver returned the requested resource (the “hello” parameter in this simple case) for this payment

Congratulations, you just performed your first micropayment!

4.2.4 Create a paywall

Before starting, please follow the microraiden installation instructions and the instructions to set up geth.

Introduction

In this tutorial we will create a simple paywalled server that will echo a requested path paramter, payable with a custom
token. You can find example code for this tutorial in microraiden/examples/echo_server.py.

Requirements

Please refer to README.md to install all required dependencies. You will also need a Chrome browser with the
MetaMask plugin.

Setting up the proxy

Initialization

For initialization you will have to supply the following parameters:

• The private key of the account receiving the payments (to extract it from a keystore file you can use
MyEtherWallet’s “View Wallet Info” functionality).

22 Chapter 4. Documentation Content

https://metamask.io/

microraiden Documentation, Release 0.2.6

• A file in which the proxy stores off-chain balance proofs. Set this to a path writable by the user that starts
the server.

from microraiden.make_helpers import make_paywalled_proxy
app = make_paywalled_proxy(private_key, state_file_name)

microraiden.make_helpers.make_paywalled_proxy() is a helper that handles the setup of the channel
manager and returns a microraiden.proxy.paywalled_proxy.PaywalledProxy instance. Microraiden
also includes other helpers that parse common commandline options. We are not using them in this example - for a
quick overview how to use them, refer to i.e. microraiden.examples.demo_proxy.__main__()

The channel manager will start syncing with the blockchain immediately.

Resource types

Now we will create a custom resource class that simply echoes a path-parameter of the user’s request for a fixed price.
The workflow is the same as with the Flask-restful: Subclass microraiden.proxy.resources.Expensive
and implement the HTTP methods you want to expose.

from microraiden.proxy.resources import Expensive

class StaticPriceResource(Expensive):
def get(self, url: str, param: str):

log.info('Resource requested: {} with param "{}"'.format(request.url,
→˓param))

return param

We add one static resource to our PaywalledProxy instance. The url argument will comply with standard flask
routing rules.

app.add_paywalled_resource(
cls=StaticPriceResource,
url="/echofix/<string:param>",
price=5

)

The resource will then be available for example at the URI /echofix/foo. Only after a payment of 5 tokens,
the proxy will send the foo parameter back to the user and will set the Content-Type header appropriately. Without
payment, the server responds with 402 Payment Required.

A probably more useful paywalled resource is a URL. This is useful to fetch content from a remote CDN:

from microraiden.proxy.content import PaywalledProxyUrl

app.add_paywalled_resource(
cls=PaywalledProxyUrl,
url="cdn\/.*",
resource_class_kwargs={"domain": 'http://cdn.myhost.com:8000/resource42'}

)

Note, that the kwargs for the constructor of the resource-class (here our PaywalledProxyUrl) have to be passed
as a dict with the resource_class_kwargs argument. In this case, the domain kwarg is the remote URL
specifying where to fetch the content from.

4.2. Tutorials 23

microraiden Documentation, Release 0.2.6

Setting a price for the resource dynamically

We can also construct the Resource in a way that the price will be dynamically calculated, e.g. based on the requests
parameters.

class DynamicPriceResource(Expensive):
def get(self, url: str, param: str):

log.info('Resource requested: {} with param "{}"'.format(request.url,
→˓param))

return param

def price(self):
return len(request.view_args['param'])

app.add_paywalled_resource(
cls=DynamicPriceResource,
url="/echodyn/<string:param>",

)

Here, the price to be paid is the length of the requested string. A request of the /echodyn/foo resource, would
therefore require a payment of 3 tokens.

Starting/stopping the proxy

You start proxy by calling run() method. This call is non-blocking – the proxy is started as a WSGI greenlet. Use
join() to sync with the task. This will block until proxy has stopped. To terminate the server, call stop() from
another greenlet.

app.run(debug=True)
app.join()

Accessing the content

Browser

To access the content with your browser, navigate to the URL of the resource you’d like to get. You’ll be faced with a
paywall – a site requesting you to pay for the resource. To do so, you first have to open a new channel. If you have the
MetaMask extension installed, you can set the amount to be deposited to the channel. After confirming the deposit,
you can navigate and payments will be done automatically.

Side notes

Proxy state file

Off-chain transactions are stored in a sqlite database. You should do regular backups of this file – it contains balance
signatures of the client, and if you lose them, you will have no way of proving that the client is settling the channel
using less funds than he has actually paid to the proxy.

24 Chapter 4. Documentation Content

microraiden Documentation, Release 0.2.6

4.2.5 Setup µRaiden Raspberry Pi in local network

Prerequisites

• Install the go-ethereum client called geth

• Install the raspberry pi with the RASPBIAN STRETCH WITH DESKTOP OS.

• Set-up the raspberry pi an explanation can be found here .

• Setup the wifi referring to this official guide.

• Login through ssh client(like putty or moba xterm) on windows or a standard terminal if you are on a linux
based system.

$ ssh pi@192.168.1.105

• We highly recommend using a virtual environment with virtualenvwrapper

sudo pip install virtualenv virtualenvwrapper

export WORKON_HOME=~/Envs

mkdir -p $WORKON_HOME

source /usr/local/bin/virtualenvwrapper.sh

mkvirtualenv -p /usr/bin/python3.5 uRaiden

• Clone and setup microraiden

git clone https://github.com/raiden-network/microraiden.git

cd microraiden/

sudo apt-get install libffi-dev libtool python-dev libssl-dev python-setuptools build-
→˓essential automake pkg-config libgmp-dev

pip install -r requirements.txt

python setup.py develop

Running µRaiden Client and Server

As the next step, you are going to setup the raspberry pi (Sender) as the µRaiden client or the and our PC as as the
µRaiden proxy server (Receiver) as well as the web3 provider running a geth node synced to Ropsten testnet. Next,
you will run the echo_server and the echo_client examples from the microraiden/examples folder.
The echo_client on the raspberry pi, and the echo_server on your PC.

Please make sure that the raspberry pi and your PC are in the same network.

Running geth on the PC

Start geth with these flags(run this command on PC)

geth --testnet --syncmode "fast" --rpc --rpcapi eth,net,web3,personal --rpcaddr 0.0.0.
→˓0 --rpcport 8545 --rpccorsdomain "*" --cache 256

1 All robot icons made by Freepic from http://www.flaticon.com.
2 Raspberry PI Pictograms by TinkTank.club

4.2. Tutorials 25

https://github.com/ethereum/go-ethereum/wiki/geth
https://www.raspberrypi.org/downloads/raspbian/
https://youtu.be/WBlXvGwkZa8
https://www.raspberrypi.org/documentation/configuration/wireless/wireless-cli.md
https://virtualenvwrapper.readthedocs.io/en/latest/
http://flaticon.com/authors/freepik
http://www.flaticon.com
http://www.tinktank.club

microraiden Documentation, Release 0.2.6

Fig. 3: Networking topology of a machine-to-machine application with RaspberryPi µRaiden-nodes12

26 Chapter 4. Documentation Content

microraiden Documentation, Release 0.2.6

The rpcaddr as 0.0.0.0 means that a given socket is listening on all the available IP addresses the computer has. This
is important so that µRaiden client on the raspberry can use it as a web3 provider.

Before running both the client or the server make sure that both the sender and receiver addresses have .:doc:TKN
balances for opening channels <blockchain>.

Running the µRaiden Proxy Server

In the ~/microraiden/microraiden/examples folder go to the echo_server.py and go to the part
where we start the server.(These set of actions are performed on your PC)

cd ~/microraiden/microraiden/examples

Start the app. proxy is a WSGI greenlet, so you must join it properly.
app.run(debug=True)

Change the app.run to include arguments for the host and port

app.run(host="192.168.1.104", port=5000, debug=True)

192.168.1.104 This IP could be different your set-up. Include the IP address of the interface on your PC that is
connected to the raspberry pi.

$ python -m echo_server --private-key ~/.ethereum/testnet/keystore/UTC--2016-07-
→˓27T07-40-38.092883212Z--9d80d905bc1e106d5bd0637c12b893c5ab60cb41
Enter the private key password:
INFO:filelock:Lock 139916998263696 acquired on ~/.config/microraiden/echo_server.db.
→˓lock
INFO:blockchain:starting blockchain polling (interval 2s)

Running the µRaiden client on the raspberry pi

Navigate to the cloned microraiden repository and modify the following files on the raspberry pi.

cd ~/microraiden/microraiden

1. In the microraiden/constants.py file change the WEB3_PROVIDER_DEFAULT value to "http:/
/192.168.1.104:8545" where 192.168.1.104 is the IP address of the PC where we started the geth
node and the µRaiden echo_server.

sudo nano microraiden/constants.py

2. In the microraiden/examples/echo_client.py change endpoint_url parameter of the run func-
tion definition which looks like this

def run(
private_key: str,
password_path: str,
resource: str,
channel_manager_address: str = None,
web3: Web3 = None,
retry_interval: float = 5,
endpoint_url: str = 'http://localhost:5000'

):

to the interface of the PC like this endpoint_url: str = 'http://192.168.1.104:5000'. This en-
ables the raspberry to make a request to the server.

4.2. Tutorials 27

microraiden Documentation, Release 0.2.6

sudo nano microraiden/examples/echo_client.py

Now we run the echo_client.py like this

(uRaiden) pi@raspberrypi:~/microraiden/microraiden $ python -m microraiden.examples.
→˓echo_client --private-key ~/.ethereum/testnet/keystore/UTC--2018-02-
→˓12T08-35-34.437506909Z--9a7d8c3116258c1f50f3c8ac67d120af58a46ceb --resource /
→˓echofix/hello
Enter the private key password:
INFO:microraiden.client.client:Creating channel to
→˓0x9d80D905bc1E106d5bd0637c12B893c5Ab60CB41 with an initial deposit of 50 @2684938
WARNING:microraiden.client.session:Newly created channel does not have enough
→˓confirmations yet. Retrying in 5 seconds.
INFO:root:Got the resource /echofix/hello type=text/html; charset=utf-8:
hello

You should get an output like above.The server should also give an output like this showing the requested resource

INFO:channel_manager:unconfirmed channel event received (sender
→˓0x9A7d8c3116258C1F50f3c8ac67d120af58a46CeB, block_number 2684940)
192.168.1.109 - - [2018-02-20 00:41:05] "GET //echofix/hello HTTP/1.1" 402 391 0.
→˓010679
INFO:channel_manager:new channel opened (sender
→˓0x9A7d8c3116258C1F50f3c8ac67d120af58a46CeB, block number 2684940)
INFO:__main__:Resource requested: http://192.168.1.104:5000/echofix/hello with param
→˓"hello"
192.168.1.109 - - [2018-02-20 00:41:10] "GET //echofix/hello HTTP/1.1" 200 120 0.
→˓060261

Through this example we hope developers can develop their own machine to machine clients and their respective
server to use microraiden for micropayments according to their respective use cases, using these resources.

1. microraiden Session Library (source microraiden/microraiden/client/session.py)

2. microraiden Requests Library (source microraiden/microraiden/requests/__init__.py)

3. microraiden Client Library (microraiden/microraiden/client/client.py)

Troubleshooting

Failed building wheel for secp256k1.

If you encounter this problem its mostly your openssl not being compatible with the libsecp256k1 library.
secp256k1 is the python binding for this library.

To check whether libsecp256k1 is installed do the following:

(uRaiden) pi@raspberrypi:~ $ apt list --installed *secp256k1*
Listing... Done
(uRaiden) pi@raspberrypi:~ $ apt list *secp256k1*
Listing... Done
libsecp256k1-0/stable 0.1~20161228-1 armhf
libsecp256k1-dev/stable 0.1~20161228-1 armhf

The installed option tells us whether the package is installed. Since we have none it does not print anything. Later
we list the packages which exists in raspbian repository of packages. We install both the packages.

sudo apt-get install libsecp256k1-0 libsecp256k1-dev

28 Chapter 4. Documentation Content

https://github.com/bitcoin-core/secp256k1
https://github.com/ludbb/secp256k1-py

microraiden Documentation, Release 0.2.6

After this we go to the releases page of secp256k1 and download the tar.gz of 0.13.2.4 (version as of writing of this
tutorial) like this.

wget https://github.com/ludbb/secp256k1-py/archive/0.13.2.4.tar.gz

From the current folder we install tar.gz package of secp256k1 like this.

pip install 0.13.2.4.tar.gz

After this again install requirements.txt

pip install -r requirements.txt

For Transferring file from your machine to the Raspberry pi refer to this documentation

https://www.raspberrypi.org/documentation/remote-access/ssh/sftp.md

You could download and use filezilla.

References

• http://digitalatomindustry.com/install-ethereum-blockchain-on-raspberry-pi/

• http://raspnode.com/diyEthereumGeth.html

• https://golang.org/dl/

• https://geth.ethereum.org/downloads/

• https://ethereum.stackexchange.com/questions/31610/how-to-install-geth-on-rpi-3b

• https://owocki.com/install-ethereum-geth-raspberry-pi-b/

4.3 Applications

This section covers the documentation of the individual parts of our µRaiden framework. We deliver Python imple-
mentations for the payment-receiver side in general as well as for the payment-sender side in a M2M (Machine-to-
Machine) or IoT (Internet-of-Things) setup. For user-facing web applications, we provide a JavaScript implementation
to directly serve the payment-senders logic to the customer.

4.3.1 Proxy-Server (python)

The Proxy-Server is a Python application that runs on the payment-receivers machine. It intercepts all calls to a HTTP
Resource with a Request for Payment HTTP Response. The Proxy-Server application can be used for any kind of
pay-per-use use-case, such as for example video-on-demand, pay per API use or pay per newspaper article.

Installation

Prerequisites

It is required that you have pip and python (version 3.5) installed. You can visit the official pip documentation and
install pip before you proceed.

It is recommended to install µRaiden in a separate virtual environment

4.3. Applications 29

https://github.com/ludbb/secp256k1-py/releases
https://www.raspberrypi.org/documentation/remote-access/ssh/sftp.md
http://digitalatomindustry.com/install-ethereum-blockchain-on-raspberry-pi/
http://raspnode.com/diyEthereumGeth.html
https://golang.org/dl/
https://geth.ethereum.org/downloads/
https://ethereum.stackexchange.com/questions/31610/how-to-install-geth-on-rpi-3b
https://owocki.com/install-ethereum-geth-raspberry-pi-b/
https://pip.pypa.io/en/stable/installing/

microraiden Documentation, Release 0.2.6

Library installation

If you plan to use µRaiden as a Python library in your own project, you can fetch the latest release of µRaiden directly
from the Python package index and install it automatically:

pip install microraiden

Development installation

If you plan to change the source-code of the server-framework or if you want to have the highest flexibility for discov-
ering our tutorials, please refer to our development installation guide.

Usage

There are several examples that demonstrate how to serve custom content. To try them, run one of the following
commands from a Python environment containing a successful µRaiden installation:

python3 -m microraiden.examples.demo_proxy --private-key <path_to_private_key_file>
→˓start

or

python3 -m microraiden.examples.wikipaydia --private-key <path_to_private_key_file> --
→˓private-key-password-file <path_to_password_file> start

By default, the web server listens on 0.0.0.0:5000. The private key file should be in the JSON format produced
by Geth/Parity and must be readable and writable only by the owner to be accepted (-rw-------).

A --private-key-password-file option can be specified, containing the password for the private key in the
first line of the file. If it’s not provided, the password will be prompted interactively. With the above commands, an
Ethereum nodes RPC interface is expected to respond on http://localhost:8545.

If you want to specify a different endpoint for this, use the --rpc-provider commandline option.

For more command line options, have a look here. To setup geth, please refer to our Blockchain setup tutorial.

Command line options

When invoking microraiden from the commandline, you have several options:

microraiden

microraiden [OPTIONS] COMMAND [ARGS]...

Options

--channel-manager-address <channel_manager_address>
Ethereum address of the channel manager contract.

--state-file <state_file>
State file of the proxy

30 Chapter 4. Documentation Content

http://localhost:8545

microraiden Documentation, Release 0.2.6

--private-key <private_key>
Path to private key file of the proxy [required]

--private-key-password-file <private_key_password_file>
Path to file containing password for the JSON-encoded private key

--ssl-cert <ssl_cert>
Cerfificate of the server (cert.pem or similar)

--gas-price <gas_price>
Gas price of outbound transactions

--rpc-provider <rpc_provider>
Address of the Ethereum RPC provider

--ssl-key <ssl_key>
SSL key of the server (key.pem or similar)

--paywall-info <paywall_info>
Directory where the paywall info is stored. The directory should contain an index.html file with the payment
info/webapp. Content of the directory (js files, images..) is available on the “js/” endpoint.

start

microraiden start [OPTIONS]

Options

--host <host>
Address of the proxy

--port <port>
Port of the proxy

Components overview

This section will give you an overview of the architecture of the µRaiden server. The illustrations are inspired by UML
even though they might not be exact standard.

Channel manager

This component interacts with the blockchain and keeps track of the state of all the channels from the transactions
Receivers point of view. For more information, look at the API for the ChannelManager

Proxy

This component interacts with the blockchain and keeps track of the state of all the channels from the transactions
Receivers point of view. For more information, look at the API for the PaywalledProxy

4.3. Applications 31

microraiden Documentation, Release 0.2.6

32 Chapter 4. Documentation Content

microraiden Documentation, Release 0.2.6

Python API

Here you can find the API of some of the important classes and methods of the µRaiden server framework. This
documentation is auto-generated from the docstrings and type-hints in the source code, so if you have further questions
please consult the source-code first.

Channel manager handles channel state changes on a low (blockchain) level.

class microraiden.channel_manager.manager.ChannelManager(web3, chan-
nel_manager_contract,
token_contract,
private_key,
state_filename=None,
n_confirmations=1)

Manages channels from the receiver’s point of view.

channels

channels_to_dict()
Export all channels as a dictionary.

check_contract_version()
Compare version of the contract to the version of the library. Only major and minor version is used in the
comparison.

close_channel(sender, open_block_number)
Close and settle a channel. Params:

sender (str): sender address open_block_number (int): block the channel was open in

close_pending_channels()
Close all channels that are in CLOSE_PENDING state. This state happens if the receiver’s eth balance is
not enough to

close channel on-chain.

event_channel_close_requested(sender, open_block_number, balance, settle_timeout)
Notify the channel manager that a the closing of a channel has been requested. Params:

settle_timeout (int): settle timeout in blocks

event_channel_opened(sender, open_block_number, deposit)
Notify the channel manager of a new confirmed channel opening.

event_channel_settled(sender, open_block_number)
Notify the channel manager that a channel has been settled.

4.3. Applications 33

microraiden Documentation, Release 0.2.6

event_channel_topup(sender, open_block_number, txhash, added_deposit)
Notify the channel manager that the deposit of a channel has been topped up.

force_close_channel(sender, open_block_number)
Forcibly remove a channel from our channel state

get_eth_balance()
Get eth balance of the receiver

get_liquid_balance()
Get the balance of the receiver in the token contract (not locked in channels).

get_locked_balance()
Get the balance in all channels combined.

get_token_address()

node_online()

pending_channels

register_payment(sender, open_block_number, balance, signature)
Register a payment. Method will try to reconstruct (verify) balance update data with a signature sent by the
client. If verification is succesfull, an internal payment state is updated. :type sender: str :param sender:
sender of the balance proof :type sender: str :type open_block_number: int :param open_block_number:
block the channel was opened in :type open_block_number: int :type balance: int :param balance: up-
dated balance :type balance: int :type signature: str :param signature: balance proof to verify :type
signature: str

reset_unconfirmed()
Forget all unconfirmed channels and topups to allow for a clean resync.

set_head(unconfirmed_head_number, unconfirmed_head_hash, confirmed_head_number, con-
firmed_head_hash)

Set the block number up to which all events have been registered.

sign_close(sender, open_block_number, balance)
Sign an agreement for a channel closing. :returns: a signature that can be used client-side to close

the channel by directly calling contract’s close method on-chain.

Return type channel close signature (str)

stop()

unconfirmed_channels

unconfirmed_channels_to_dict()
Export all unconfirmed channels as a dictionary.

unconfirmed_event_channel_opened(sender, open_block_number, deposit)
Notify the channel manager of a new channel opening that has not been confirmed yet.

unconfirmed_event_channel_topup(sender, open_block_number, txhash, added_deposit)
Notify the channel manager of a topup with not enough confirmations yet.

verify_balance_proof(sender, open_block_number, balance, signature)
Verify that a balance proof is valid and return the sender.

This method just verifies if the balance proof is valid - no state update is performed.

Returns Channel, if it exists

wait_sync()

34 Chapter 4. Documentation Content

microraiden Documentation, Release 0.2.6

class microraiden.channel_manager.channel.Channel(receiver, sender, deposit,
open_block_number)

__init__(receiver, sender, deposit, open_block_number)
A channel between two parties.

Parameters

• receiver (str) – receiver address

• sender (str) – sender address

• deposit (int) – channel deposit

• open_block_number (int) – block the channel was created in

classmethod from_dict(state)

is_closed
Returns – bool: True if channel is closed

Return type bool

to_dict()

Returns Channel object serialized as a dict

Return type dict

unconfirmed_deposit
Returns – int: sum of all deposits, including unconfirmed ones

class microraiden.channel_manager.channel.ChannelState
An enumeration.

CLOSED = 1

CLOSE_PENDING = 2

OPEN = 0

UNDEFINED = 100

class microraiden.proxy.paywalled_proxy.PaywalledProxy(channel_manager,
flask_app=None, pay-
wall_html_dir=None,
paywall_js_dir=None)

add_paywalled_resource(cls, url, price=None, *args, **kwargs)

static gevent_error_handler(context, exc_info)

join()
Block until server greenlet/Proxy stops

run(host=’localhost’, port=5000, debug=False, ssl_context=None)
Start the proxy/WSGI server

stop()

4.3.2 M2M-Client (python)

The M2M-Client is a Python framework for building applications that run on the payment-senders machine. The client
interacts with the blockchain to handle channel creation and closing when needed. It communicates with a payment-

4.3. Applications 35

microraiden Documentation, Release 0.2.6

receivers http-endpoint (e.g. implemented with our Python server framework) and handles the signing of off-chain
transactions.

In order to implement an automated machine-to-machine interaction, the framework provides event-handler methods,
that allow to easily write extension classes to handle the clients business-logic without user interaction.

Installation

Prerequisites

It is required that you have pip and python (version 3.5) installed. You can visit the official pip documentation and
install pip before you proceed.

It is recommended to install µRaiden in a separate virtual environment

Library installation

If you plan to use µRaiden as a Python library in your own project, you can fetch the latest release of µRaiden directly
from the Python package index and install it automatically:

pip install microraiden

Development installation

If you plan to change the source-code of the client-framework or if you want to have the highest flexibility for discov-
ering our tutorials, please refer to our development installation guide.

Usage

The µRaiden client can be used as a standalone library, to make machine-to-machine payments easily available.

An example use of the library would import the Client class:

from microraiden import Client

client = Client('<hex-encoded private key>')

Alternatively you can specify a path to a JSON private key, optionally specifying a file containing the password. If it’s
not provided, it’ll be prompted interactively.

client = Client(key_path='<path to private key file>', key_password_file='<path to
→˓password file>')

This client object allows interaction with the blockchain and offline-signing of transactions/balance-proofs.

An example lifecycle of a Client object could look like this:

from microraiden import Client

receiver = '0xb6b79519c91edbb5a0fc95f190741ad0c4b1bb4d'
privkey = '0x55e58f57ec2177ea681ee461c6d2740060fd03109036e7e6b26dcf0d16a28169'

'with' statement to cleanly release the client's file lock in the end.

(continues on next page)

36 Chapter 4. Documentation Content

https://pip.pypa.io/en/stable/installing/

microraiden Documentation, Release 0.2.6

(continued from previous page)

with Client(privkey) as client:

channel = client.get_suitable_channel(receiver, 10)
channel.create_transfer(3)
channel.create_transfer(4)

print(
'Current balance proof:\n'
'From: {}\n'
'To: {}\n'
'Channel opened at block: #{}\n' # used to uniquely identify this channel
'Balance: {}\n' # total: 7
'Signature: {}\n' # valid signature for a balance of 7 on

→˓this channel
.format(

channel.sender, channel.receiver, channel.block, channel.balance, channel.
→˓balance_sig

)
)

channel.topup(5) # total deposit: 15

channel.create_transfer(5) # total balance: 12

channel.close()

Wait for settlement period to end.

channel.settle()

Instead of requesting a close and waiting for the settlement period to end, you
→˓can also perform

a cooperative close, provided that you have a receiver-signed balance proof
→˓that matches your

current channel balance.

channel.close_cooperatively(closing_sig)

Components overview

This section will give you an overview of the architecture of the µRaiden M2M-client. The illustrations are inspired
by UML even though they might not be exact standard.

Client

Python API

Here you can find the API of some of the important classes and methods of the µRaiden M2M-client framework. This
documentation is auto-generated from the docstrings and type-hints in the source code, so if you have further questions
please consult the source-code first.

class microraiden.client.client.Client(private_key=None, key_password_path=None,
channel_manager_address=None, web3=None)

4.3. Applications 37

microraiden Documentation, Release 0.2.6

38 Chapter 4. Documentation Content

microraiden Documentation, Release 0.2.6

__init__(private_key=None, key_password_path=None, channel_manager_address=None,
web3=None)

Parameters

• private_key (Optional[str]) –

• key_password_path (Optional[str]) –

• channel_manager_address (Optional[str]) –

• web3 (Optional[Web3]) –

Return type None

get_open_channels(receiver=None)
Returns all open channels to the given receiver. If no receiver is specified, all open channels are returned.

Return type List[Channel]

get_suitable_channel(receiver, value, initial_deposit=<function Client.<lambda>>,
topup_deposit=<function Client.<lambda>>)

Searches stored channels for one that can sustain the given transfer value. If none is found, a possibly open
channel is topped up using the topup callable to determine its topup value. If both attempts fail, a new
channel is created based on the initial deposit callable. Note: In the realistic case that only one channel is
opened per (sender,receiver) pair, this method usually performs like this: 1. Directly return open channel
if sufficiently funded. 2. Topup existing open channel if insufficiently funded. 3. Create new channel if no
open channel exists. If topping up or creating fails, this method returns None. Channels are topped up just
enough so that their remaining capacity equals topup_deposit(value).

Return type Channel

open_channel(receiver_address, deposit)
Open a channel with a receiver and deposit

Attempts to open a new channel to the receiver with the given deposit. Blocks until the creation transaction
is found in a pending block or timeout is reached.

Parameters

• receiver_address (str) – the partner with whom the channel should be opened

• deposit (int) – the initial deposit for the channel (Should be > 0)

Return type Optional[Channel]

Returns The opened channel, if successful. Otherwise None

sync_channels()
Merges locally available channel information, including their current balance signatures, with channel
information available on the blockchain to make up for local data loss. Naturally, balance signatures
cannot be recovered from the blockchain.

class microraiden.client.channel.Channel(core, sender, receiver, block, deposit=0,
balance=0, state=<State.open: 1>,
on_settle=<function Channel.<lambda>>)

class State
An enumeration.

closed = 3

open = 1

settling = 2

4.3. Applications 39

microraiden Documentation, Release 0.2.6

balance

balance_sig

close(balance=None)
Attempts to request close on a channel. An explicit balance can be given to override the locally stored
balance signature. Blocks until a confirmation event is received or timeout.

close_cooperatively(closing_sig)
Attempts to close the channel immediately by providing a hash of the channel’s balance proof signed by
the receiver. This signature must correspond to the balance proof stored in the passed channel state.

create_transfer(value)
Updates the given channel’s balance and balance signature with the new value. The signature is returned
and stored in the channel state.

is_suitable(value)

is_valid()

Return type bool

key

Return type bytes

settle()
Attempts to settle a channel that has passed its settlement period. If a channel cannot be settled yet, the
call is ignored with a warning. Blocks until a confirmation event is received or timeout.

sign()

topup(deposit)
Attempts to increase the deposit in an existing channel. Block until confirmation.

update_balance(value)

class microraiden.client.session.Session(client=None, endpoint_url=None,
retry_interval=5, initial_deposit=<function Ses-
sion.<lambda>>, topup_deposit=<function Ses-
sion.<lambda>>, close_channel_on_exit=False,
**client_kwargs)

close()
Closes all adapters and as such the session

close_channel(endpoint_url=None)

on_cooperative_close_denied(response=None)

on_exit(method, url, response, **kwargs)

on_http_error(method, url, response, **kwargs)

Return type bool

on_http_response(method, url, response, **kwargs)
Called whenever server returns a reply. Return False to abort current request.

Return type bool

on_init(method, url, **kwargs)

on_insufficient_confirmations(method, url, response, **kwargs)

Return type bool

40 Chapter 4. Documentation Content

microraiden Documentation, Release 0.2.6

on_invalid_amount(method, url, response, **kwargs)

Return type bool

on_invalid_balance_proof(method, url, response, **kwargs)

Return type bool

on_invalid_contract_address(method, url, response, **kwargs)

Return type bool

on_nonexisting_channel(method, url, response, **kwargs)

Return type bool

on_payment_requested(method, url, response, **kwargs)

Return type bool

on_success(method, url, response, **kwargs)

Return type bool

request(method, url, **kwargs)
Constructs a Request, prepares it and sends it. Returns Response object.

Parameters

• method (str) – method for the new Request object.

• url (str) – URL for the new Request object.

• params – (optional) Dictionary or bytes to be sent in the query string for the Request.

• data – (optional) Dictionary, bytes, or file-like object to send in the body of the
Request.

• json – (optional) json to send in the body of the Request.

• headers – (optional) Dictionary of HTTP Headers to send with the Request.

• cookies – (optional) Dict or CookieJar object to send with the Request.

• files – (optional) Dictionary of 'filename': file-like-objects for multi-
part encoding upload.

• auth – (optional) Auth tuple or callable to enable Basic/Digest/Custom HTTP Auth.

• timeout (float or tuple) – (optional) How long to wait for the server to send data
before giving up, as a float, or a (connect timeout, read timeout) tuple.

• allow_redirects (bool) – (optional) Set to True by default.

• proxies – (optional) Dictionary mapping protocol or protocol and hostname to the URL
of the proxy.

• stream – (optional) whether to immediately download the response content. Defaults to
False.

• verify – (optional) Either a boolean, in which case it controls whether we verify the
server’s TLS certificate, or a string, in which case it must be a path to a CA bundle to use.
Defaults to True.

• cert – (optional) if String, path to ssl client cert file (.pem). If Tuple, (‘cert’, ‘key’) pair.

Return type requests.Response

class microraiden.client.context.Context(private_key, web3, channel_manager_address)

4.3. Applications 41

microraiden Documentation, Release 0.2.6

4.3.3 Web-Client (JavaScript)

For a quick overview on how to use the Javascript client library please refer to the README

API documentation

The autodocumented API reference currently also resides in our GitHub.

4.4 Smart Contract

Smart Contracts, unit-tests and infrastructure for the enforcing Blockchain component of µRaiden.

4.4.1 Installation

Prerequisites

It is required that you have pip and python (version 3.6) installed. You can visit the official pip documentation and
install pip before you proceed.

It is recommended to install the Smart Contract of µRaiden in a separate virtual environment

For the installation of the Smart Contracts it is not necessary to install the server or client components of µRaiden.

4.4.2 Setup

From the root directory of µRaiden, execute the following to run the install script:

cd contracts
make install

4.4.3 Deployment

Chain setup for testing

Note - you can change RPC/IPC chain connection, timeout parameters etc. in contracts/project.json

privtest

1. Start the geth-node from the commandline:

geth --ipcpath="~/Library/Ethereum/privtest/geth.ipc" \
--datadir="~/Library/Ethereum/privtest" \

--dev \
---rpc --rpccorsdomain '*' --rpcport 8545 \
--rpcapi eth,net,web3,personal \
--unlock 0xf590ee24CbFB67d1ca212e21294f967130909A5a \
--password ~/password.txt

the geth console will show up

(continues on next page)

42 Chapter 4. Documentation Content

https://github.com/raiden-network/microraiden/blob/master/microraiden/webui/microraiden/README.md
https://github.com/raiden-network/microraiden/blob/master/microraiden/webui/microraiden/docs/README.md
https://pip.pypa.io/en/stable/installing/
https://github.com/raiden-network/microraiden/blob/master/contracts/project.json

microraiden Documentation, Release 0.2.6

(continued from previous page)

you have to mine yourself:
miner.start()
geth attach ipc:~/Library/Ethereum/privtest/geth.ipc

The --unlock argument specifies which geth account should be unlocked for RPC access. This assumes that
0xf590ee24CbFB67d1ca212e21294f967130909A5a is your account’s address, and has to be changed ac-
cordingly. More info can be found here.

The --password argument specifies the file that contains the passphrase the geth account has been locked with. The
~/password.txt file has to be changed accordingly to your password file location. More info can be found here.

kovan

1. Get some testnet-Ether at the kovan-faucet

2. Modify the project.json to change the default account

3. Start the Parity node from the commandline:

parity --geth \
--chain kovan \
--force-ui --reseal-min-period 0 \
--jsonrpc-cors http://localhost \
--jsonrpc-apis web3,eth,net,parity,traces,rpc,personal \
--unlock 0x5601Ea8445A5d96EEeBF89A67C4199FbB7a43Fbb \
--password ~/password.txt \
--author 0x5601Ea8445A5d96EEeBF89A67C4199FbB7a43Fbb

The --unlock argument specifies which parity account should be unlocked for RPC access. This assumes that
0x5601Ea8445A5d96EEeBF89A67C4199FbB7a43Fbb is your account’s address, and has to be changed ac-
cordingly. More info can be found here.

The --password argument specifies the file that contains the passphrase the geth account has been locked with. The
~/password.txt file has to be changed accordingly to your password file location. More info can be found here.

The --author argument specifies what the coinbase address should be. Set this to the same address as with the
--unlock argument. This assumes that 0x5601Ea8445A5d96EEeBF89A67C4199FbB7a43Fbb is your ac-
count’s address, and has to be changed accordingly. More info can be found here.

ropsten

1. Get some testnet-Ether at the ropsten-faucet

2. Modify the project.json to change the default account

3. Start the geth node from the commandline:

geth --testnet \
--rpc --rpcport 8545 \
--unlock 0xf590ee24CbFB67d1ca212e21294f967130909A5a \
--password ~/password.txt

The --unlock argument specifies which geth account should be unlocked for RPC access. This assumes that
0xf590ee24CbFB67d1ca212e21294f967130909A5a is your account’s address, and has to be changed ac-
cordingly. More info can be found here.

4.4. Smart Contract 43

https://github.com/ethereum/go-ethereum/wiki/Managing-your-accounts#listing-accounts-and-checking-balances
https://github.com/ethereum/go-ethereum/wiki/Managing-your-accounts#listing-accounts-and-checking-balances
https://gitter.im/kovan-testnet/faucet
https://github.com/raiden-network/microraiden/blob/master/contracts/project.json#L179
https://github.com/paritytech/parity
https://github.com/paritytech/parity/wiki/Configuring-Parity#cli-options
https://github.com/paritytech/parity/wiki/Configuring-Parity#cli-options
https://github.com/paritytech/parity/wiki/Configuring-Parity#cli-options
https://www.reddit.com/r/ethdev/comments/61zdn8/if_you_need_some_ropsten_testnet_ethers/
https://github.com/raiden-network/microraiden/blob/master/contracts/project.json#L49
https://github.com/ethereum/go-ethereum/wiki/Managing-your-accounts#listing-accounts-and-checking-balances

microraiden Documentation, Release 0.2.6

The --password argument specifies the file that contains the passphrase the geth account has been locked with. The
~/password.txt file has to be changed accordingly to your password file location. More info can be found here.

rinkeby

1. Get some testnet-Ether at the rinkeby-faucet

2. Modify the /contracts/project.json to change the default account

Fast deployment

There are some scripts to provide you with convenient ways to setup a quick deployment.

Fast deploy on kovan | ropsten | rinkeby | tester | privtest

cd microraiden/contracts

Following two calls are equivalent
python -m deploy.deploy_testnet # --owner is web.eth.accounts[0]
python -m deploy.deploy_testnet \

--chain kovan \
--owner `0xf590ee24CbFB67d1ca212e21294f967130909A5a` \
--challenge-period 500 \
--token-name CustomToken --token-symbol TKN \
--supply 10000000 --token-decimals 18

Provide an already deployed, custom token:
python -m deploy.deploy_testnet --token-address TOKEN_ADDRESS

Apart from the --owner argument, above are the default values. The script provides the following command-line
options:

python -m deploy.deploy_testnet

python -m deploy.deploy_testnet [OPTIONS]

Options

--chain <chain>
Chain to deploy on: kovan | ropsten | rinkeby | tester | privtest

--owner <owner>
Contracts owner, default: web3.eth.accounts[0]

--challenge-period <challenge_period>
Challenge period in number of blocks.

--supply <supply>
Token contract supply (number of total issued tokens).

--token-name <token_name>
Token contract name.

44 Chapter 4. Documentation Content

https://github.com/ethereum/go-ethereum/wiki/Managing-your-accounts#listing-accounts-and-checking-balances
https://www.rinkeby.io/#faucet
https://github.com/raiden-network/microraiden/blob/master/contracts/project.json#L214

microraiden Documentation, Release 0.2.6

--token-decimals <token_decimals>
Token contract number of decimals.

--token-symbol <token_symbol>
Token contract symbol.

--token-address <token_address>
Already deployed token address.

4.4.4 Usage

• from root/contracts:

compilation
populus compile

tests
pytest
pytest -p no:warnings -s
pytest tests/test_uraiden.py -p no:warnings -s

Recommended for speed:
you have to comment lines in tests/conftest.py to use this
pip install pytest-xdist==1.17.1
pytest -p no:warnings -s -n NUM_OF_CPUs

4.4.5 API

Generated docs

There is an Auto-Generated-API, that is compiled with soldocs.

Prerequisites

pip install soldocs
populus compile
soldocs --input build/contracts.json --output docs/contract/
→˓RaidenMicroTransferChannels.md --contracts RaidenMicroTransferChannels

Opening a transfer channel

ERC223 compatible (recommended)

Sender sends tokens to the Contract, with a payload for calling createChannelPrivate.

Token.transfer(_to, _value, _data)

Gas cost (testing): 88976

• _to = Contract.address

• _value = deposit value (number of tokens)

• _data contains the Sender and Receiver addresses encoded in 20 bytes

• in python _data = bytes.fromhex(sender_address[2:] + receiver_address[2:])

4.4. Smart Contract 45

https://github.com/raiden-network/microraiden/blob/master/docs/contract/RaidenMicroTransferChannels.md

microraiden Documentation, Release 0.2.6

ERC20 compatible

approve token transfers to the contract from the Sender's behalf
Token.approve(contract, deposit)

Contract.createChannel(receiver_address, deposit)

Gas cost (testing): 120090

Topping up a channel

Adding tokens to an already opened channel.

46 Chapter 4. Documentation Content

microraiden Documentation, Release 0.2.6

ERC223 compatible (recommended)

Sender sends tokens to the Contract, with a payload for calling topUp.

Token.transfer(_to, _value, _data)

Gas cost (testing): 54885

• _to = Contract.address

• _value = deposit value (number of tokens)

• _data contains the Sender and Receiver addresses encoded in 20 bytes + the open_block_number in 4 bytes

• in python

_data = sender_address[2:] + receiver_address[2:] + hex(open_block_number)[2:].
→˓zfill(8)
_data = bytes.fromhex(_data)

ERC20 compatible

#approve token transfers to the contract from the Sender's behalf
Token.approve(contract, added_deposit)

open_block_number = block number at which the channel was opened
Contract.topUp(receiver_address, open_block_number, added_deposit)

Gas cost (testing): 85414

4.4. Smart Contract 47

microraiden Documentation, Release 0.2.6

Generating and validating a balance proof

(to be updated post EIP712)

Sender has to provide a balance proof to the Receiver when making a micropayment
The contract implements some helper functions for that

Balance message
bytes32 balance_message_hash = keccak256(

keccak256(
'string message_id',
'address receiver',
'uint32 block_created',
'uint192 balance',
'address contract'

),
keccak256(

'Sender balance proof signature',
_receiver_address,
_open_block_number,
_balance,
address(this)

)
);

balance_message_hash is signed by the Sender with MetaMask
balance_msg_sig

Data is sent to the Receiver (receiver, open_block_number, balance, balance_msg_sig)

48 Chapter 4. Documentation Content

microraiden Documentation, Release 0.2.6

Generating and validating a closing agreement

from eth_utils import encode_hex

Sender has to provide a balance proof to the Contract and
a closing agreement proof from Receiver (closing_sig)
closing_sig is created in the same way as balance_msg_sig, but it is signed by the
→˓Receiver

Closing signature message
bytes32 balance_message_hash = keccak256(

keccak256(
'string message_id',
'address sender',
'uint32 block_created',
'uint192 balance',
'address contract'

),
keccak256(

'Receiver closing signature',
_sender_address,
_open_block_number,
_balance,
address(this)

)
);

balance_message_hash is signed by the Sender with MetaMask
balance_msg_sig

balance_msg_sig is signed by the Receiver inside the microraiden code
closing_sig

Send to the Contract (example of collaborative closing, transaction sent by Sender)
Contract.transact({ "from": Sender }).cooperativeClose(

_receiver_address,
_open_block_number,
_balance,
_balance_msg_sig,
_closing_sig

)

Balance proof / closing agreement signature verification:

sender_address = Contract.call().extractBalanceProofSignature(receiver_address, open_
→˓block_number, balance, balance_msg_sig)

receiver_address = Contract.call().extractClosingSignature(sender_address, open_block_
→˓number, balance, closing_sig)

Closing a channel

4.4. Smart Contract 49

microraiden Documentation, Release 0.2.6

1. Receiver calls Contract with the sender's signed balance message = instant close
→˓& settle
2. Client calls Contract with receiver's closing signature = instant close & settle
Gas cost (testing): 71182
Contract.cooperativeClose(receiver_address, open_block_number, balance, balance_msg_
→˓sig, closing_sig)

3. Client calls Contract without receiver's closing signature = challenge period
→˓starts, channel is not settled yet
Gas cost (testing): 53876
Contract.uncooperativeClose(receiver_address, open_block_number, balance)

3.a. During the challenge period, 1. can happen.

3.b. Client calls Contract after settlement period ends
Gas cost (testing): 40896
Contract.settle(receiver_address, open_block_number)

4.5 Specifications

4.5.1 HTTP Headers

Response Headers

200 OK

Headers Type Description
RDN-Gateway-Path bytes Path root of the channel management app
RDN-Receiver-Address address Address of the Merchant
RDN-Contract-Address address Address of RaidenMicroTransferChannels contract
RDN-Token-Address address Address of the Token contract
RDN-Price uint Resource price
RDN-Sender-Address address Address of the Client
RDN-Sender-Balance uint Balance of the Channel

50 Chapter 4. Documentation Content

microraiden Documentation, Release 0.2.6

4.5. Specifications 51

microraiden Documentation, Release 0.2.6

402 Payment Required

Headers Type Description
RDN-Gateway-Path bytes Path root of the channel management app
RDN-Receiver-Address ad-

dress
Address of the Merchant

RDN-Contract-Address ad-
dress

Address of RaidenMicroTransferChannels contract

RDN-Token-Address ad-
dress

Address of the Token contract

RDN-Price uint Resource price
RDN-Sender-Address ad-

dress
Address of the Client

RDN-Sender-Balance uint Balance of the Channel
RDN-Balance-Signature bytes Optional. Last saved balance proof from the sender.

+ one of the following:
RDN-Insufficient-Conf ir-
mations

uint Failure - not enough confirmations after the channel creation. Client should
wait and retry.

RDN-Nonexisting-Channel string Failure - channel does not exist or was closed.
RDN-Invalid-Balance-
Proof

uint Failure - Balance must not be greater than deposit or The balance must not
decrease.

RDN-Invalid-Amount uint Failure - wrong payment value

409

• ValueError

502

• Ethereum node is not responding

• Channel manager ETH balance is below limit

Request Headers

Headers Type Description
RDN-Contract-Address address Address of MicroTransferChannels contract
RDN-Receiver-Address address Address of the Merchant
RDN-Sender-Address address Address of the Client
RDN-Payment uint Amount of the payment
RDN-Sender-Balance uint Balance of the Channel
RDN-Balance-Signature bytes Signature from the Sender, signing the balance (post payment)
RDN-Open-Block uint Opening block number of the channel required for unique identification

4.5.2 Off-Chain sequence

(not-so-standard sequence diagram) For a better overview, also check out how the smart contract does a balance-proof
validation.

52 Chapter 4. Documentation Content

microraiden Documentation, Release 0.2.6

4.5. Specifications 53

microraiden Documentation, Release 0.2.6

4.5.3 REST API

µRaiden exposes a Restful API to provide insight into a channel state, balances, and it allows proxy operator to close
and settle the channels.

Proxy endpoints

Getting the status of the proxy

/api/1/stats

Return proxy status: balances, open channels, contract ABI etc.

• deposit_sum - sum of all open channel deposits

• open_channels - count of all open channels

• pending_channels - count of all closed, but not yet settled channels

• balance_sum - sum of all spent, but not yet settled funds

• unique_senders - count of all unique addresses that have channels open

• liquid_balance - amount of tokens that are settled and available to the receiver

• token_address - token contract address

• contract_address - channel manager contract address

• receiver_address - server’s ethereum address

• manager_abi - ABI of the channel manager contract

• token_abi - ABI of the token contract

Example Request

GET /api/1/stats

Example Response

200 OK and

{
"deposit_sum": "268",
"open_channels": "33",
"pending_channels": "15",
"balance_sum": "12",
"unique_senders": "6",
"liquid_balance": "334",
"token_address" : "0x8227a53130c90d32e0294cdde576411379138ba8",
"contract_address": "0x69f8b894d89fb7c4f6f082f4eb84b2b2c3311605",
"receiver_address": "0xe67104491127e419064335ea5bf714622a209660",
"manager_abi": "{ ... }",
"token_abi": "{ ... }",

}

54 Chapter 4. Documentation Content

microraiden Documentation, Release 0.2.6

Channel endpoints

Getting all open channels

/api/1/channels/

Return a list of all open channels.

Example Request

GET /api/1/channels

Example Response

200 OK and

[
{

"sender_address" : "0x5601ea8445a5d96eeebf89a67c4199fbb7a43fbb",
"open_block" : "3241462",
"balance" : "0",
"deposit" : "10",

},
{

"sender_address" : "0x5176305093fff279697d3fc9b6bc09574303edb4",
"open_block" : "32654234",
"balance" : "0",
"deposit" : "25",

},
]

Getting all open channels for a given sender

/api/1/channels/<sender_address>

Return a list of all open channels for the sender specified in the second argument of the URL.

Example Request

GET /api/1/channels/0x5601ea8445a5d96eeebf89a67c4199fbb7a43fbb

Example Response

200 OK and

[
{

"sender_address" : "0x5601ea8445a5d96eeebf89a67c4199fbb7a43fbb",
"open_block" : "3241462",
"balance" : "0",

(continues on next page)

4.5. Specifications 55

microraiden Documentation, Release 0.2.6

(continued from previous page)

"deposit" : "10",
"state" : "open",

},
]

Getting a single channel info

/api/1/channels/<sender_address>/<open_block>

Return an info about the channel, identified by sender and open block id.

Example Request

GET /api/1/channels/0x5601ea8445a5d96eeebf89a67c4199fbb7a43fbb/3241462

Example Response

200 OK and

{
"sender_address" : "0x5601ea8445a5d96eeebf89a67c4199fbb7a43fbb",
"open_block" : "3241462",
"balance" : "0",
"deposit" : "10",
"state" : "open",

}

Cooperatively closing a channel

/api/1/channels/<sender_address>/<open_block>

Return a receiver’s signature that can be used to settle the channel immediately (by calling contract’s cooperative-
Close() function).

Example Request

DELETE /api/1/channels/0x5601ea8445a5d96eeebf89a67c4199fbb7a43fbb/3241642

with payload balance - last balance of the channel

{
"balance": 13000,

}

Example Response

200 OK and

56 Chapter 4. Documentation Content

microraiden Documentation, Release 0.2.6

{
"close_signature" :

→˓"0xb30809f9a32e4f5012a3e7a7275e4f0f96eaff49f7a34747507abc3147a0975c31cf9f9aa318d1f9675d6e39f062a565213bcef4baa820f0332616f0c38324fe01
→˓",
}

Possible Responses

HTTP Code Condition
200 OK For a successful coop-close
500 Server Error Internal Raiden node error
400 Bad request Invalid address, signature, or channel doesn’t exist.

4.5. Specifications 57

microraiden Documentation, Release 0.2.6

58 Chapter 4. Documentation Content

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

59

microraiden Documentation, Release 0.2.6

60 Chapter 5. Indices and tables

Index

Symbols
–chain <chain>

python–m-deploy.deploy_testnet command line op-
tion, 44

–challenge-period <challenge_period>
python–m-deploy.deploy_testnet command line op-

tion, 44
–channel-manager-address <channel_manager_address>

microraiden command line option, 30
–gas-price <gas_price>

microraiden command line option, 31
–host <host>

microraiden-start command line option, 31
–owner <owner>

python–m-deploy.deploy_testnet command line op-
tion, 44

–paywall-info <paywall_info>
microraiden command line option, 31

–port <port>
microraiden-start command line option, 31

–private-key <private_key>
microraiden command line option, 30

–private-key-password-file <private_key_password_file>
microraiden command line option, 31

–rpc-provider <rpc_provider>
microraiden command line option, 31

–ssl-cert <ssl_cert>
microraiden command line option, 31

–ssl-key <ssl_key>
microraiden command line option, 31

–state-file <state_file>
microraiden command line option, 30

–supply <supply>
python–m-deploy.deploy_testnet command line op-

tion, 44
–token-address <token_address>

python–m-deploy.deploy_testnet command line op-
tion, 45

–token-decimals <token_decimals>

python–m-deploy.deploy_testnet command line op-
tion, 44

–token-name <token_name>
python–m-deploy.deploy_testnet command line op-

tion, 44
–token-symbol <token_symbol>

python–m-deploy.deploy_testnet command line op-
tion, 45

M
microraiden command line option

–channel-manager-address <chan-
nel_manager_address>, 30

–gas-price <gas_price>, 31
–paywall-info <paywall_info>, 31
–private-key <private_key>, 30
–private-key-password-file <pri-

vate_key_password_file>, 31
–rpc-provider <rpc_provider>, 31
–ssl-cert <ssl_cert>, 31
–ssl-key <ssl_key>, 31
–state-file <state_file>, 30

microraiden-start command line option
–host <host>, 31
–port <port>, 31

P
python–m-deploy.deploy_testnet command line option

–chain <chain>, 44
–challenge-period <challenge_period>, 44
–owner <owner>, 44
–supply <supply>, 44
–token-address <token_address>, 45
–token-decimals <token_decimals>, 44
–token-name <token_name>, 44
–token-symbol <token_symbol>, 45

61

	What is µRaiden?
	Try out the demos
	Next steps
	Documentation Content
	Introduction
	Comparison: Raiden Network
	Sender / Receiver
	Smart Contract

	Tutorials
	Development setup
	Blockchain setup
	Try the echo service
	Create a paywall
	Setup µRaiden Raspberry Pi in local network

	Applications
	Proxy-Server (python)
	M2M-Client (python)
	Web-Client (JavaScript)

	Smart Contract
	Installation
	Setup
	Deployment
	Usage
	API

	Specifications
	HTTP Headers
	Off-Chain sequence
	REST API

	Indices and tables

