

Welcome to microraiden’s documentation!

Contents

Contents:

	Components overview
	HTTP Headers

	Off-Chain Micropayment Sequence

	µRaiden Server

	Python Client

	Web Client

	Smart Contract

	Proxy tutorial
	Introduction

	Requirements

	Setting up the proxy

	Starting/stopping the proxy

	Accessing the content

	Side notes

	REST API
	Introduction

	Proxy endpoints

	Channel endpoints

	JavaScript client library
	Introduction

	API documentation

	Smart Contract
	Smart Contract

	Installation

	API

Indices and tables

	Index

	Module Index

	Search Page

Components overview

HTTP Headers

Response Headers

200 OK

	Headers

	Type

	Description

	RDN-Gateway-Path

	bytes

	Path root of the channel management app

	RDN-Receiver-Address

	address

	Address of the Merchant

	RDN-Contract-Address

	address

	Address of RaidenMicroTransferChannels contract

	RDN-Token-Address

	address

	Address of the Token contract

	RDN-Price

	uint

	Resource price

	RDN-Sender-Address

	address

	Address of the Client

	RDN-Sender-Balance

	uint

	Balance of the Channel

402 Payment Required

	Headers

	Type

	Description

	RDN-Gateway-Path

	bytes

	Path root of the channel management app

	RDN-Receiver-Address

	address

	Address of the Merchant

	RDN-Contract-Address

	address

	Address of RaidenMicroTransferChannels contract

	RDN-Token-Address

	address

	Address of the Token contract

	RDN-Price

	uint

	Resource price

	RDN-Sender-Address

	address

	Address of the Client

	RDN-Sender-Balance

	uint

	Balance of the Channel

	RDN-Balance-Signature

	bytes

	Optional. Last saved balance proof from the
sender.

	
	
	+ one of the following:

	RDN-Insufficient-Conf
irmations

	uint

	Failure - not enough confirmations after the
channel creation. Client should wait and retry.

	RDN-Nonexisting-Channel

	string

	Failure - channel does not exist or was closed.

	RDN-Invalid-Balance-
Proof

	uint

	Failure - Balance must not be greater than
deposit or The balance must not decrease.

	RDN-Invalid-Amount

	uint

	Failure - wrong payment value

409

	ValueError

502

	Ethereum node is not responding

	Channel manager ETH balance is below limit

Request Headers

	Headers

	Type

	Description

	RDN-Contract-Address

	address

	Address of MicroTransferChannels contract

	RDN-Receiver-Address

	address

	Address of the Merchant

	RDN-Sender-Address

	address

	Address of the Client

	RDN-Payment

	uint

	Amount of the payment

	RDN-Sender-Balance

	uint

	Balance of the Channel

	RDN-Balance-Signature

	bytes

	Signature from the Sender, signing the
balance (post payment)

	RDN-Open-Block

	uint

	Opening block number of the channel
required for unique identification

Off-Chain Micropayment Sequence

(not-so-standard sequence diagram) For a better overview, also check out
how the smart contract does a balance-proof validation.

[image:]

µRaiden Server

Non-detailed components overview. For function arguments and types, please check source code and docstrings.

Channel manager

[image:]

Proxy

[image:]

Python Client

[image:]

Web Client

For an overview of the web client, please refer to the JavaScript client library documentation.

Smart Contract

For an overview of the RaidenMicroTransferChannels smart contract, please refer to the Smart Contract API documentation.

Proxy tutorial

Introduction

In this tutorial we will create a simple paywalled server that will
echo a requested path paramter, payable with a custom token. You can find example code for this tutorial
in microraiden/examples/echo_server.py.

Requirements

Please refer to README.md to install all required dependencies. You will
also need a Chrome browser with the MetaMask
plugin [https://metamask.io/].

Setting up the proxy

Initialization

	For initialization you will have to supply the following parameters:

	
	The private key of the account receiving the payments (to extract it from a keystore file you can use MyEtherWallet’s “View Wallet Info” functionality).

	A file in which the proxy stores off-chain balance proofs. Set this to a path writable by the user that starts the server.

from microraiden.make_helpers import make_paywalled_proxy
app = make_paywalled_proxy(private_key, state_file_name)

make_paywalled_proxy() is a helper that handles the setup of the channel manager
and returns a PaywalledProxy instance.
Microraiden also includes other helpers that parse common commandline options. We are not using them in this example - for a quick overview how to use them,
refer to i.e. __main__()

The channel manager will start syncing with the blockchain immediately.

Resource types

Now we will create a custom resource class that simply echoes a path-parameter of the user’s request for a fixed price.
The workflow is the same as with the Flask-restful: Subclass microraiden.proxy.resources.Expensive and
implement the HTTP methods you want to expose.

from microraiden.proxy.resources import Expensive

class StaticPriceResource(Expensive):
 def get(self, url: str, param: str):
 log.info('Resource requested: {} with param "{}"'.format(request.url, param))
 return param

We add one static resource to our PaywalledProxy instance.
The url argument will comply with standard flask routing rules.

app.add_paywalled_resource(
 cls=StaticPriceResource,
 url="/echofix/<string:param>",
 price=5
)

The resource will then be available for example at the URI /echofix/foo. Only after a
payment of 5 tokens, the proxy will send the foo parameter back to the user and will
set the Content-Type header appropriately. Without payment, the
server responds with 402 Payment Required.

A probably more useful paywalled resource is a URL. This is useful to fetch content
from a remote CDN:

from microraiden.proxy.content import PaywalledProxyUrl

app.add_paywalled_resource(
 cls=PaywalledProxyUrl,
 url="cdn\/.*",
 resource_class_kwargs={"domain": 'http://cdn.myhost.com:8000/resource42'}
)

Note, that the kwargs for the constructor of the resource-class (here our PaywalledProxyUrl)
have to be passed as a dict with the resource_class_kwargs argument.
In this case, the domain kwarg is the remote URL specifying where to fetch the content from.

Setting a price for the resource dynamically

We can also construct the Resource in a way that the price will be dynamically calculated, e.g. based on the requests parameters.

class DynamicPriceResource(Expensive):
 def get(self, url: str, param: str):
 log.info('Resource requested: {} with param "{}"'.format(request.url, param))
 return param

 def price(self):
 return len(request.view_args['param'])

app.add_paywalled_resource(
 cls=DynamicPriceResource,
 url="/echodyn/<string:param>",
)

Here, the price to be paid is the length of the requested string.
A request of the /echodyn/foo resource, would therefore require a payment of 3 tokens.

Starting/stopping the proxy

You start proxy by calling run() method. This call is non-blocking
– the proxy is started as a WSGI greenlet. Use join() to sync with
the task. This will block until proxy has stopped. To terminate the
server, call stop() from another greenlet.

app.run(debug=True)
app.join()

Accessing the content

Browser

To access the content with your browser, navigate to the URL of the
resource you’d like to get. You’ll be faced with a paywall – a site
requesting you to pay for the resource. To do so, you first have to open
a new channel. If you have the MetaMask extension installed, you can set
the amount to be deposited to the channel. After confirming the deposit,
you can navigate and payments will be done automatically.

Side notes

Proxy state file

Off-chain transactions are stored in a sqlite database. You should do
regular backups of this file – it contains balance signatures of the
client, and if you lose them, you will have no way of proving that the
client is settling the channel using less funds than he has actually
paid to the proxy.

REST API

Introduction

µRaiden exposes a Restful API to
provide insight into a channel state, balances, and it allows proxy
operator to close and settle the channels.

Proxy endpoints

Getting the status of the proxy

This will return a status of balances, open channels etc.

	deposit_sum - sum of all open channel deposits

	open_channels - count of all open channels

	pending_channels - count of all closed, but not yet settled channels

	balance_sum - sum of all spent, but not yet settled funds

	unique_senders - count of all unique addresses that have channels open

	liquid_balance - amount of tokens that are settled and available to the receiver

	token_address - token contract address

	contract_address - channel manager contract address

	receiver_address - server’s ethereum address

	manager_abi - ABI of the channel manager contract

	token_abi - ABI of the token contract

Example Request

GET /api/1/stats

Example Response

200 OK and

{
 "deposit_sum": "268",
 "open_channels": "33",
 "pending_channels": "15",
 "balance_sum": "12",
 "unique_senders": "6",
 "liquid_balance": "334",
 "token_address" : "0x8227a53130c90d32e0294cdde576411379138ba8",
 "contract_address": "0x69f8b894d89fb7c4f6f082f4eb84b2b2c3311605",
 "receiver_address": "0xe67104491127e419064335ea5bf714622a209660",
 "manager_abi": "{ ... }",
 "token_abi": "{ ... }",
}

Channel endpoints

Getting all open channels

This will return a list of all open channels.

Example Request

GET /api/1/channels

Example Response

200 OK and

[
{
 "sender_address" : "0x5601ea8445a5d96eeebf89a67c4199fbb7a43fbb",
 "open_block" : "3241462",
 "balance" : "0",
 "deposit" : "10",
},
{
 "sender_address" : "0x5176305093fff279697d3fc9b6bc09574303edb4",
 "open_block" : "32654234",
 "balance" : "0",
 "deposit" : "25",
},
]

Getting all open channels for a given sender

This will return a list of all open channels for the sender specified in
the second argument of the URL.

Example Request

GET /api/1/channels/<sender_address>

Example Response

200 OK and

[
{
 "sender_address" : "0x5601ea8445a5d96eeebf89a67c4199fbb7a43fbb",
 "open_block" : "3241462",
 "balance" : "0",
 "deposit" : "10",
 "state" : "open",
},
]

Getting a single channel info

Return an info about the channel, identified by sender and open block
id.

Example Request

GET /api/1/channels/<sender_address>/<open_block>

Example Response

200 OK and

{
 "sender_address" : "0x5601ea8445a5d96eeebf89a67c4199fbb7a43fbb",
 "open_block" : "3241462",
 "balance" : "0",
 "deposit" : "10",
 "state" : "open",
}

Cooperatively closing a channel

Returns a receiver’s signature that can be used to settle the channel
immediately (by calling contract’s cooperativeClose() function).

Example Request

DELETE /api/1/channels/<sender_address>/<open_block>

with payload balance - last balance of the channel

{
 "balance": 13000,
}

Example Response

200 OK and

{
 "close_signature" : "0xb30809f9a32e4f5012a3e7a7275e4f0f96eaff49f7a34747507abc3147a0975c31cf9f9aa318d1f9675d6e39f062a565213bcef4baa820f0332616f0c38324fe01",
}

Possible Responses

	HTTP Code

	Condition

	200 OK

	For a successful coop-close

	500 Server Error

	Internal Raiden node error

	400 Bad request

	Invalid address, signature,
or channel doesn’t exist.

JavaScript client library

Introduction

For a quick overview on how to use the Javascript client library please refer to the README [https://github.com/raiden-network/microraiden/blob/master/microraiden/microraiden/webui/microraiden/README.md]

API documentation

The autodocumented API reference currently also resides in our GitHub [https://github.com/raiden-network/microraiden/blob/master/microraiden/microraiden/webui/microraiden/docs/README.md].

Smart Contract

Smart Contracts, Unittests and Infrastructure for RaidenPaymentChannel

	Smart Contract

Installation

The Smart Contracts can be installed separately from the other
components.

Prerequisites

	Python 3.6

	pip [https://pip.pypa.io/en/stable/]

Setup

pip install -r requirements.txt

Usage

	from root/contracts:

compilation
populus compile

tests
pytest
pytest -p no:warnings -s
pytest tests/test_uraiden.py -p no:warnings -s

Recommended for speed:
you have to comment lines in tests/conftest.py to use this
pip install pytest-xdist==1.17.1
pytest -p no:warnings -s -n NUM_OF_CPUs

Deployment

Chain setup for testing

Note - you can change RPC/IPC chain connection, timeout parameters etc. in project.json [https://github.com/raiden-network/microraiden/blob/master/contracts/project.json]

privtest

	Start the geth-node from the commandline:

geth --ipcpath="~/Library/Ethereum/privtest/geth.ipc" \
 --datadir="~/Library/Ethereum/privtest" \
 --dev \
 ---rpc --rpccorsdomain '*' --rpcport 8545 \
 --rpcapi eth,net,web3,personal \
 --unlock 0xf590ee24CbFB67d1ca212e21294f967130909A5a \
 --password ~/password.txt

geth console
you have to mine yourself: miner.start()
geth attach ipc:/Users/loredana/Library/Ethereum/privtest/geth.ipc

kovan

	Get some testnet-Ether at the kovan-faucet [https://gitter.im/kovan-testnet/faucet]

	Modify the project.json [https://github.com/raiden-network/microraiden/blob/master/contracts/project.json#L179] to change the default account

	Start the Parity [https://github.com/paritytech/parity] node from the commandline:

parity --geth \
 --chain kovan \
 --force-ui --reseal-min-period 0 \
 --jsonrpc-cors http://localhost \
 --jsonrpc-apis web3,eth,net,parity,traces,rpc,personal \
 --unlock 0x5601Ea8445A5d96EEeBF89A67C4199FbB7a43Fbb \
 --password ~/password.txt \
 --author 0x5601Ea8445A5d96EEeBF89A67C4199FbB7a43Fbb

ropsten

	Get some testnet-Ether at the ropsten-faucet [https://www.reddit.com/r/ethdev/comments/61zdn8/if_you_need_some_ropsten_testnet_ethers/]

	Modify the project.json [https://github.com/raiden-network/microraiden/blob/master/contracts/project.json#L49] to change the default account

	Start the geth node from the commandline:

geth --testnet \
 --rpc --rpcport 8545 \
 --unlock 0xbB5AEb01acF5b75bc36eC01f5137Dd2728FbE983 \
 --password ~/password.txt

rinkeby

	Get some testnet-Ether at the rinkeby-faucet [https://www.rinkeby.io/#faucet]

	Modify the /contracts/project.json [https://github.com/raiden-network/microraiden/blob/master/contracts/project.json#L214] to change the default account

Fast deployment

There are some scripts to provide you with convenient ways to setup a quick deployment.

Fast deploy on kovan | ropsten | rinkeby | tester | privtest

Following two calls are equivalent
python -m deploy.deploy_testnet # --owner is web.eth.accounts[0]
python -m deploy.deploy_testnet \
 --chain kovan \
 --owner 0x5601Ea8445A5d96EEeBF89A67C4199FbB7a43Fbb \
 --challenge-period 500 \
 --token-name CustomToken --token-symbol TKN \
 --supply 10000000 --token-decimals 18

Provide a custom deployed token
python -m deploy.deploy_testnet --token-address TOKEN_ADDRESS

API

Generated docs

There is a Auto-Generated-API [https://github.com/raiden-network/microraiden/blob/master/docs/contract/RaidenMicroTransferChannels.md], that is compiled with soldocs.

Prerequisites

pip install soldocs
populus compile
soldocs --input build/contracts.json --output docs/contract/RaidenMicroTransferChannels.md --contracts RaidenMicroTransferChannels

Opening a transfer channel

ERC223 compatible (recommended)

Sender sends tokens to the Contract, with a payload for calling
createChannelPrivate.

Token.transfer(_to, _value, _data)

Gas cost (testing): 88976

	_to = Contract.address

	_value = deposit value (number of tokens)

	_data contains the Sender and Receiver addresses encoded in 20 bytes

	in python _data = bytes.fromhex(sender_address[2:] + receiver_address[2:])

[image: ../_images/ChannelOpen_223.png]

ERC20 compatible

approve token transfers to the contract from the Sender's behalf
Token.approve(contract, deposit)

Contract.createChannel(receiver_address, deposit)

Gas cost (testing): 120090

[image: ../_images/ChannelOpen_20.png]

Topping up a channel

Adding tokens to an already opened channel.

ERC223 compatible (recommended)

Sender sends tokens to the Contract, with a payload for calling
topUp.

Token.transfer(_to, _value, _data)

Gas cost (testing): 54885

	_to = Contract.address

	_value = deposit value (number of tokens)

	_data contains the Sender and Receiver addresses encoded in 20 bytes + the
open_block_number in 4 bytes

	in python

_data = sender_address[2:] + receiver_address[2:] + hex(open_block_number)[2:].zfill(8)
_data = bytes.fromhex(_data)

[image: ../_images/ChannelTopUp_223.png]

ERC20 compatible

#approve token transfers to the contract from the Sender's behalf
Token.approve(contract, added_deposit)

open_block_number = block number at which the channel was opened
Contract.topUp(receiver_address, open_block_number, added_deposit)

Gas cost (testing): 85414

[image: ../_images/ChannelTopUp_20.png]

Generating and validating a balance proof

(to be updated post EIP712)

Sender has to provide a balance proof to the Receiver when making a micropayment
The contract implements some helper functions for that

Balance message
bytes32 balance_message_hash = keccak256(
 keccak256(
 'string message_id',
 'address receiver',
 'uint32 block_created',
 'uint192 balance',
 'address contract'
),
 keccak256(
 'Sender balance proof signature',
 _receiver_address,
 _open_block_number,
 _balance,
 address(this)
)
);

balance_message_hash is signed by the Sender with MetaMask
balance_msg_sig

Data is sent to the Receiver (receiver, open_block_number, balance, balance_msg_sig)

Generating and validating a closing agreement

from eth_utils import encode_hex

Sender has to provide a balance proof to the Contract and
a closing agreement proof from Receiver (closing_sig)
closing_sig is created in the same way as balance_msg_sig, but it is signed by the Receiver

Closing signature message
bytes32 balance_message_hash = keccak256(
 keccak256(
 'string message_id',
 'address sender',
 'uint32 block_created',
 'uint192 balance',
 'address contract'
),
 keccak256(
 'Receiver closing signature',
 _sender_address,
 _open_block_number,
 _balance,
 address(this)
)
);

balance_message_hash is signed by the Sender with MetaMask
balance_msg_sig

balance_msg_sig is signed by the Receiver inside the microraiden code
closing_sig

Send to the Contract (example of collaborative closing, transaction sent by Sender)
Contract.transact({ "from": Sender }).cooperativeClose(
 _receiver_address,
 _open_block_number,
 _balance,
 _balance_msg_sig,
 _closing_sig
)

Balance proof / closing agreement signature verification:

sender_address = Contract.call().extractBalanceProofSignature(receiver_address, open_block_number, balance, balance_msg_sig)

receiver_address = Contract.call().extractClosingSignature(sender_address, open_block_number, balance, closing_sig)

Closing a channel

1. Receiver calls Contract with the sender's signed balance message = instant close & settle
2. Client calls Contract with receiver's closing signature = instant close & settle
Gas cost (testing): 71182
Contract.cooperativeClose(receiver_address, open_block_number, balance, balance_msg_sig, closing_sig)

3. Client calls Contract without receiver's closing signature = challenge period starts, channel is not settled yet
Gas cost (testing): 53876
Contract.uncooperativeClose(receiver_address, open_block_number, balance)

3.a. During the challenge period, 1. can happen.

3.b. Client calls Contract after settlement period ends
Gas cost (testing): 40896
Contract.settle(receiver_address, open_block_number)

[image: ../_images/ChannelCycle.png]

Smart Contract

Smart Contracts, Unittests and Infrastructure for RaidenPaymentChannel

	Smart Contract

Installation

The Smart Contracts can be installed separately from the other
components.

Prerequisites

	Python 3.6

	pip [https://pip.pypa.io/en/stable/]

Setup

pip install -r requirements.txt

Usage

	from root/contracts:

compilation
populus compile

tests
pytest
pytest -p no:warnings -s
pytest tests/test_uraiden.py -p no:warnings -s

Recommended for speed:
you have to comment lines in tests/conftest.py to use this
pip install pytest-xdist==1.17.1
pytest -p no:warnings -s -n NUM_OF_CPUs

Deployment

Chain setup for testing

Note - you can change RPC/IPC chain connection, timeout parameters etc. in project.json [https://github.com/raiden-network/microraiden/blob/master/contracts/project.json]

privtest

	Start the geth-node from the commandline:

geth --ipcpath="~/Library/Ethereum/privtest/geth.ipc" \
 --datadir="~/Library/Ethereum/privtest" \
 --dev \
 ---rpc --rpccorsdomain '*' --rpcport 8545 \
 --rpcapi eth,net,web3,personal \
 --unlock 0xf590ee24CbFB67d1ca212e21294f967130909A5a \
 --password ~/password.txt

geth console
you have to mine yourself: miner.start()
geth attach ipc:/Users/loredana/Library/Ethereum/privtest/geth.ipc

kovan

	Get some testnet-Ether at the kovan-faucet [https://gitter.im/kovan-testnet/faucet]

	Modify the project.json [https://github.com/raiden-network/microraiden/blob/master/contracts/project.json#L179] to change the default account

	Start the Parity [https://github.com/paritytech/parity] node from the commandline:

parity --geth \
 --chain kovan \
 --force-ui --reseal-min-period 0 \
 --jsonrpc-cors http://localhost \
 --jsonrpc-apis web3,eth,net,parity,traces,rpc,personal \
 --unlock 0x5601Ea8445A5d96EEeBF89A67C4199FbB7a43Fbb \
 --password ~/password.txt \
 --author 0x5601Ea8445A5d96EEeBF89A67C4199FbB7a43Fbb

ropsten

	Get some testnet-Ether at the ropsten-faucet [https://www.reddit.com/r/ethdev/comments/61zdn8/if_you_need_some_ropsten_testnet_ethers/]

	Modify the project.json [https://github.com/raiden-network/microraiden/blob/master/contracts/project.json#L49] to change the default account

	Start the geth node from the commandline:

geth --testnet \
 --rpc --rpcport 8545 \
 --unlock 0xbB5AEb01acF5b75bc36eC01f5137Dd2728FbE983 \
 --password ~/password.txt

rinkeby

	Get some testnet-Ether at the rinkeby-faucet [https://www.rinkeby.io/#faucet]

	Modify the /contracts/project.json [https://github.com/raiden-network/microraiden/blob/master/contracts/project.json#L214] to change the default account

Fast deployment

There are some scripts to provide you with convenient ways to setup a quick deployment.

Fast deploy on kovan | ropsten | rinkeby | tester | privtest

Following two calls are equivalent
python -m deploy.deploy_testnet # --owner is web.eth.accounts[0]
python -m deploy.deploy_testnet \
 --chain kovan \
 --owner 0x5601Ea8445A5d96EEeBF89A67C4199FbB7a43Fbb \
 --challenge-period 500 \
 --token-name CustomToken --token-symbol TKN \
 --supply 10000000 --token-decimals 18

Provide a custom deployed token
python -m deploy.deploy_testnet --token-address TOKEN_ADDRESS

API

Generated docs

There is a Auto-Generated-API [https://github.com/raiden-network/microraiden/blob/master/docs/contract/RaidenMicroTransferChannels.md], that is compiled with soldocs.

Prerequisites

pip install soldocs
populus compile
soldocs --input build/contracts.json --output docs/contract/RaidenMicroTransferChannels.md --contracts RaidenMicroTransferChannels

Opening a transfer channel

ERC223 compatible (recommended)

Sender sends tokens to the Contract, with a payload for calling
createChannelPrivate.

Token.transfer(_to, _value, _data)

Gas cost (testing): 88976

	_to = Contract.address

	_value = deposit value (number of tokens)

	_data contains the Sender and Receiver addresses encoded in 20 bytes

	in python _data = bytes.fromhex(sender_address[2:] + receiver_address[2:])

[image: ../_images/ChannelOpen_223.png]

ERC20 compatible

approve token transfers to the contract from the Sender's behalf
Token.approve(contract, deposit)

Contract.createChannel(receiver_address, deposit)

Gas cost (testing): 120090

[image: ../_images/ChannelOpen_20.png]

Topping up a channel

Adding tokens to an already opened channel.

ERC223 compatible (recommended)

Sender sends tokens to the Contract, with a payload for calling
topUp.

Token.transfer(_to, _value, _data)

Gas cost (testing): 54885

	_to = Contract.address

	_value = deposit value (number of tokens)

	_data contains the Sender and Receiver addresses encoded in 20 bytes + the
open_block_number in 4 bytes

	in python

_data = sender_address[2:] + receiver_address[2:] + hex(open_block_number)[2:].zfill(8)
_data = bytes.fromhex(_data)

[image: ../_images/ChannelTopUp_223.png]

ERC20 compatible

#approve token transfers to the contract from the Sender's behalf
Token.approve(contract, added_deposit)

open_block_number = block number at which the channel was opened
Contract.topUp(receiver_address, open_block_number, added_deposit)

Gas cost (testing): 85414

[image: ../_images/ChannelTopUp_20.png]

Generating and validating a balance proof

(to be updated post EIP712)

Sender has to provide a balance proof to the Receiver when making a micropayment
The contract implements some helper functions for that

Balance message
bytes32 balance_message_hash = keccak256(
 keccak256(
 'string message_id',
 'address receiver',
 'uint32 block_created',
 'uint192 balance',
 'address contract'
),
 keccak256(
 'Sender balance proof signature',
 _receiver_address,
 _open_block_number,
 _balance,
 address(this)
)
);

balance_message_hash is signed by the Sender with MetaMask
balance_msg_sig

Data is sent to the Receiver (receiver, open_block_number, balance, balance_msg_sig)

Generating and validating a closing agreement

from eth_utils import encode_hex

Sender has to provide a balance proof to the Contract and
a closing agreement proof from Receiver (closing_sig)
closing_sig is created in the same way as balance_msg_sig, but it is signed by the Receiver

Closing signature message
bytes32 balance_message_hash = keccak256(
 keccak256(
 'string message_id',
 'address sender',
 'uint32 block_created',
 'uint192 balance',
 'address contract'
),
 keccak256(
 'Receiver closing signature',
 _sender_address,
 _open_block_number,
 _balance,
 address(this)
)
);

balance_message_hash is signed by the Sender with MetaMask
balance_msg_sig

balance_msg_sig is signed by the Receiver inside the microraiden code
closing_sig

Send to the Contract (example of collaborative closing, transaction sent by Sender)
Contract.transact({ "from": Sender }).cooperativeClose(
 _receiver_address,
 _open_block_number,
 _balance,
 _balance_msg_sig,
 _closing_sig
)

Balance proof / closing agreement signature verification:

sender_address = Contract.call().extractBalanceProofSignature(receiver_address, open_block_number, balance, balance_msg_sig)

receiver_address = Contract.call().extractClosingSignature(sender_address, open_block_number, balance, closing_sig)

Closing a channel

1. Receiver calls Contract with the sender's signed balance message = instant close & settle
2. Client calls Contract with receiver's closing signature = instant close & settle
Gas cost (testing): 71182
Contract.cooperativeClose(receiver_address, open_block_number, balance, balance_msg_sig, closing_sig)

3. Client calls Contract without receiver's closing signature = challenge period starts, channel is not settled yet
Gas cost (testing): 53876
Contract.uncooperativeClose(receiver_address, open_block_number, balance)

3.a. During the challenge period, 1. can happen.

3.b. Client calls Contract after settlement period ends
Gas cost (testing): 40896
Contract.settle(receiver_address, open_block_number)

[image: ../_images/ChannelCycle.png]

Index

RaidenMicroTransferChannels

Non-Constant Functions

topUp

Increase the channel deposit with _added_deposit.

Input parameters

name	type	indexed	description
_receiver_address	address		The address that receives tokens.
_open_block_number	uint32		The block number at which a channel between the sender and receiver was created.
_added_deposit	uint192		The added token deposit with which the current deposit is increased.

cooperativeClose

Function called by the sender, receiver or a delegate, with all the needed signatures to close the channel and settle immediately.

Input parameters

name	type	indexed	description
_receiver_address	address		The address that receives tokens.
_open_block_number	uint32		The block number at which a channel between the sender and receiver was created.
_balance	uint192		The amount of tokens owed by the sender to the receiver.
_balance_msg_sig	bytes		The balance message signed by the sender.
_closing_sig	bytes		The receiver's signed balance message, containing the sender's address.

removeTrustedContracts

Function for removing trusted contracts. Can only be called by owner_address.

Input parameters

name	type	indexed	description
_trusted_contracts	address[]		Array of contract addresses to be removed from the trusted_contracts mapping.

uncooperativeClose

Sender requests the closing of the channel and starts the challenge period. This can only happen once.

Input parameters

name	type	indexed	description
_receiver_address	address		The address that receives tokens.
_open_block_number	uint32		The block number at which a channel between the sender and receiver was created.
_balance	uint192		The amount of tokens owed by the sender to the receiver.

settle

Function called by the sender after the challenge period has ended, in order to settle and delete the channel, in case the receiver has not closed the channel himself.

Input parameters

name	type	indexed	description
_receiver_address	address		The address that receives tokens.
_open_block_number	uint32		The block number at which a channel between the sender and receiver was created.

topUpDelegate

Function that allows a delegate contract to increase the channel deposit with _added_deposit. Can only be called by a trusted contract. Compatibility with ERC20 tokens.

Input parameters

name	type	indexed	description
_sender_address	address		The sender's address in behalf of whom the delegate sends tokens.
_receiver_address	address		The address that receives tokens.
_open_block_number	uint32		The block number at which a channel between the sender and receiver was created.
_added_deposit	uint192		The added token deposit with which the current deposit is increased.

addTrustedContracts

Function for adding trusted contracts. Can only be called by owner_address.

Input parameters

name	type	indexed	description
_trusted_contracts	address[]		Array of contract addresses that can be trusted to open and top up channels on behalf of a sender.

withdraw

Allows channel receiver to withdraw tokens.

Input parameters

name	type	indexed	description
_open_block_number	uint32		The block number at which a channel between the sender and receiver was created.
_balance	uint192		Partial or total amount of tokens owed by the sender to the receiver. Has to be smaller or equal to the channel deposit. Has to match the balance value from _balance_msg_sig - the balance message signed by the sender. Has to be smaller or equal to the channel deposit.
_balance_msg_sig	bytes		The balance message signed by the sender.

createChannel

Creates a new channel between msg.sender and _receiver_address and transfers the _deposit token deposit to this contract. Compatibility with ERC20 tokens.

Input parameters

name	type	indexed	description
_receiver_address	address		The address that receives tokens.
_deposit	uint192		The amount of tokens that the sender escrows.

tokenFallback

Opens a new channel or tops up an existing one, compatibility with ERC 223.
Can only be called from the trusted Token contract.

Input parameters

name	type	indexed	description
_sender_address	address		The address that sent the tokens to this contract.
_deposit	uint256		The amount of tokens that the sender escrows.
_data	bytes		Data needed for either creating a channel or topping it up. It always contains the sender and receiver addresses +/- a block number.

createChannelDelegate

Function that allows a delegate contract to create a new channel between _sender_address and _receiver_address and transfers the token deposit to this contract. Can only be called by a trusted contract. Compatibility with ERC20 tokens.

Input parameters

name	type	indexed	description
_sender_address	address		The sender's address in behalf of whom the delegate sends tokens.
_receiver_address	address		The address that receives tokens.
_deposit	uint192		The amount of tokens that the sender escrows.

Constant Functions

challenge_period

Output

name	type	
	uint32	

getChannelInfo

Function for retrieving information about a channel.

Input parameters

name	type	indexed	description
_sender_address	address		The address that sends tokens.
_receiver_address	address		The address that receives tokens.
_open_block_number	uint32		The block number at which a channel between the sender and receiver was created.

Output

Function returns: Channel information: unique_identifier, deposit, settle_block_number, closing_balance, withdrawn balance).

name	type	
	bytes32	
	uint192	
	uint32	
	uint192	
	uint192	

extractBalanceProofSignature

Returns the sender address extracted from the balance proof. dev Works with eth_signTypedData https://github.com/ethereum/EIPs/pull/712.

Input parameters

name	type	indexed	description
_receiver_address	address		The address that receives tokens.
_open_block_number	uint32		The block number at which a channel between the sender and receiver was created.
_balance	uint192		The amount of tokens owed by the sender to the receiver.
_balance_msg_sig	bytes		The balance message signed by the sender.

Output

Function returns: Address of the balance proof signer.

name	type	
	address	

extractClosingSignature

Returns the receiver address extracted from the closing signature. Works with eth_signTypedData https://github.com/ethereum/EIPs/pull/712.

Input parameters

name	type	indexed	description
_sender_address	address		The address that sends tokens.
_open_block_number	uint32		The block number at which a channel between the sender and receiver was created.
_balance	uint192		The amount of tokens owed by the sender to the receiver.
_closing_sig	bytes		The receiver's signed balance message, containing the sender's address.

Output

Function returns: Address of the closing signature signer.

name	type	
	address	

withdrawn_balances

Input parameters

name	type	indexed	description
	bytes32		

Output

name	type	
	uint192	

version

Output

name	type	
	string	

channel_deposit_bugbounty_limit

Output

name	type	
	uint256	

closing_requests

Input parameters

name	type	indexed	description
	bytes32		

Output

name	type	
closing_balance	uint192	
settle_block_number	uint32	

channels

Input parameters

name	type	indexed	description
	bytes32		

Output

name	type	
deposit	uint192	
open_block_number	uint32	

getKey

Returns the unique channel identifier used in the contract.

Input parameters

name	type	indexed	description
_sender_address	address		The address that sends tokens.
_receiver_address	address		The address that receives tokens.
_open_block_number	uint32		The block number at which a channel between the sender and receiver was created.

Output

Function returns: Unique channel identifier.

name	type	
data	bytes32	

owner_address

Output

name	type	
	address	

trusted_contracts

Input parameters

name	type	indexed	description
	address		

Output

name	type	
	bool	

token

Output

name	type	
	address	

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_images/ChannelCycle.png
RaidenMicroTransferChannels

Sender wants Channel with Receiver
Transfer Sender tokens to Contract

Channel created
(sender, receiver, open_block_number)
Off-Chain transfers enabled

Party
wants to close
Channe

Balance
signed by Sender +
Receiver?

0 1

uncooperativeClose cooperativeClose
Non Cooperative Case

Challenge period start
settle_block_number

Sender
calls settle or Receiver calls
QoperativeClosg

O]

nav.xhtml

 Table of Contents

 		
 Welcome to microraiden’s documentation!

 		
 Components overview

 		
 HTTP Headers

 		
 Response Headers

 		
 Request Headers

 		
 Off-Chain Micropayment Sequence

 		
 µRaiden Server

 		
 Channel manager

 		
 Proxy

 		
 Python Client

 		
 Web Client

 		
 Smart Contract

 		
 Proxy tutorial

 		
 Introduction

 		
 Requirements

 		
 Setting up the proxy

 		
 Initialization

 		
 Resource types

 		
 Setting a price for the resource dynamically

 		
 Starting/stopping the proxy

 		
 Accessing the content

 		
 Browser

 		
 Side notes

 		
 Proxy state file

 		
 REST API

 		
 Introduction

 		
 Proxy endpoints

 		
 Getting the status of the proxy

 		
 Channel endpoints

 		
 Getting all open channels

 		
 Getting all open channels for a given sender

 		
 Getting a single channel info

 		
 Cooperatively closing a channel

 		
 JavaScript client library

 		
 Introduction

 		
 API documentation

 		
 Smart Contract

 		
 Smart Contract

 		
 Installation

 		
 Prerequisites

 		
 Setup

 		
 Usage

 		
 Deployment

 		
 API

 		
 Generated docs

 		
 Opening a transfer channel

 		
 Topping up a channel

 		
 Generating and validating a balance proof

 		
 Generating and validating a closing agreement

 		
 Closing a channel

_images/ChannelOpen_223.png
Sender WebApp Token ChannelsContract

Open Channel with Receiver,
deposit = 10
>
transfer
(ChannelsContract, 10, data)
>
tokenFallback
(sender, 10, data)
>
receiver address
from data
createChannelPrivate
(sender, receiver, 10)
ChannelCreated
ChannelCreated
(sender, receiver, 10)
<

Sender WebApp Token ChannelsContract

_images/ChannelTopUp_20.png
Sender|

Top Up Channel

add 10 tokens
existing deposit

Receiver, open_block_number,

20

Sender

| WebApp Token ChannelsContract
>
approve
(ChannelsContract, 10)
»|
topUp
(receiver, deposit)
>
transferFrom
(sender, contract, 10)
<
ChannelToppedUp
ChannelToppedUp
(sender, receiver,
open_block_number, 10, 30)
<
WebApp Token ChannelsContract

_images/ChannelManagerClass.png
ChannelManager
Manages channels from the receiver's point of view.

receiver

private_key
channel_manager_contract
token_contract
n_confirmations

log

state

lock_state

channels
unconfirmed_channels
pending_channels

_run()

stop(

set_head()
event_channel_opened()
unconfirmed_event_channel_opened()
event_channel_close_requested()
event_channel_settled()
unconfirmed_event_channel_topup()
event_channel_topup()
close_channel()
force_close_channel()
sign_close()
get_locked_balance()
get_liquid_balance()
get_eth_balance()
verify_balance_proof()
register_payment(
reset_unconfirmed()
channels_to_dict()
unconfirmed_channels_to_dict()
wait_sync()

node_online()
get_token_address()
check_contract_version()
close_pending_channels()

ChannelManagerState

filename

conn
contract_address
receiver
network_id

Blockchain confirmed_head_number Channel

o confirmed_head_hash receiver

firmed_head_number

channel_manager_contract: address Egggﬂfirmed_head_hash sender
gméo(?#izrirr%r;%lcl)\ﬁl]z;nager n_channels geggsglock number
log: logger n_open._channels bglan_ce h
wgi't sggr]\c event: gevent.event.Event channels state
is cEn!r/\ecTed' év%nt event.Event unconfirmed_channels last_signature

~ -9 : : pending_channels S
sync_chunk_size settle_timeout
sync_start_block ctime
running: bool mtime
insufficient_balance: bool confirrPed g
unconfirmed_topups

setup_db()
update_sync_state()
get_::hannehls() .
result_to_channe ;

run() Fanr h is_closed
Si get_channel_rowid() h .
stop(S get_unconfirmed_topups() unconfirmed_deposit

wait_sync()
_update() gﬁﬁ#ﬁiggi@ts() from_dict(state: dict)
set_unconfirmed_topups()
add_channel()
get_channel
del_channel
load()
del_unconfirmed_channels()
set_channel_state()

ChannelState

OPEN =0
CLOSED =1
CLOSE_PENDING =2

UNDEFINED = 100

_images/ChannelOpen_20.png
Sender

WebApp

Open Channel with Receiver,
deposit

Sender

approve
(ChannelsContract, 10)

Token

>
createChannel

(receiver, deposit)

ChannelsContract

<

transferFrom
(sender, contract, 10)

>

ChannelCreated

ChannelCreated

(sender, receiver, 10)

WebApp

Token

ChannelsContract

_images/ProxyClass.png
PaywalledProxy

app
api: Api (Flask

rest_server: WSGlServer
server_greenlet
channel_manager: ChannelManager
light_client_proxy

run()

stop()

join()
gevent_error_handler()
add_paywalled_resource()

ChannelManagementListChannels

contract_address
channel_manager ChannelManagementChannelinfo ChannelManagementStats ChannelManagementAdmin ChannelManagementAdminChannels receiver_address
ChannelManagementRoot ChannelManagementLogin ChannelManagementLogout channel_manager: Channel Manager
get_all_channels() — g channel_manager: ChannelManager channel_manager: ChannelManager channel_manager: ChannelManager light_client_proxy
get_channel_filter() . get() get()
get(sender_address,opening_block) get() get() delete()

_price
get_channel_statusS) delete(sender_address,opening_block)

get()
paywall

get(sender_address
delete(sender_address)

get_paywall()

D
T
users

tokens contract_address LiahtCllentP PaywalledProxyUrl
. i ientProx
token_expiry_seconds Eigﬂ‘égtﬁ%%rggzr] y -
light_client_proxy price
get_fn
access() get(url)

paywall_check() get(request)
generate_headers()
reply_webui()

add_user()
del_user()
authorize()
verify_token()
remove_token()
get_token()

RequestData

contract_address
receiver_address
sender_address
open_block_number

0..*

TokenAccess

token
time_created

balance
balance_signature
payment

price

time_accessed
user

check_cookies(cookies)
check_headers(headers)

_images/PythonClientClass.png
channel: Channel

endpoint_url
- client: Client
iy merva

initial_deposit
topup_deposit
close_channel_on_exit

channels
context

sync_channels() close()
get_channel(event) request()
open_channel(receiver, deposit) close_channel()
get_open_channels(receiver) _request_resource()
get suitable_channel() on _nonexisting_channel()
ﬁayment requested()
ttp_error()
on eX|t()
on_success()
on_http_response()

core
sender
receiver

deposit

update_balance

balance private_key

balance_sig address

state web3

on_settle chlfnnel_manager: ChannelManager
token

Sln

topup% eposit)

close(balance)

close cooperatlvely(closing_sig)
settle()

create_transfer(value)

_images/ChannelTopUp_223.png
Senderl

Top Up Channel

add 10 tokens
existing deposit

Receiver, open_block_number,

20

Sender

| WebApp Token ChannelsContract
>
transfer
(ChannelsContract, 10, data)
>
data = msg.data
for topUp
tokenFallback
(sender, 10, data)
>
receiver address + open_block_number
from data
topUpPrivate
(sender, receiver,
open_block_number,
ChannelToppedUp
ChannelToppedUp
(sender, receiver,
open_block_number, 10, 30)
<

WebApp Token ChannelsContract

10)

_images/OffChainSequence.png
Sender WebApp Proxy ChannelManager

request paywalled content

STATE 402

request paywalled content

serve paywall UI

RDN-Balance-Signature
not set

HTTP 402 PaymentRequired
(TTP 492 PaymentRequired |

LocalStorage
check if channel exists

channel found (sender, receiver, block)

paywall UI

Buy resource

>

get balance proof hash
from RaidenMicro
cont

TransferChannels
ract

| Ask for balance proof hash signing

Sign balance proof

STATE 402

STATE 402

STATE 200

Premium content

set HTTP headers
RDN-Open-Block
RDN-Sender-Balance
RDN-Balance-Signature

_

verify balance proof

crypto.py
verify_balance_proof

[oo]

Insufficient confirmations

HTTP 402 PaymentRequired
e L7 402 FaymentRequired |

[oo]

Channel does not exist

HTTP 402 PaymentRequired
e L7 402 FaymentRequired |

channel found

register_payment (receiver, block,
balance, balance signature)

Exception

Invalid balance amount

HTTP 402 PaymentRequired
17 402 FaymentRequired |

Exception

Invalid balance proof

HTTP 402 PaymentRequired
17 402 FaymentRequired |

balance proof 0K
payment registered

Serve premium content

Sender WebApp Proxy ChannelManager

